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PREFACE.

THis treatise on the Special or Elementary Geometry consists of
four parts.

Parr I is designed as an introduction. In it the student is made
familiar with the geometrical concepts, and with the fundamental
definitions and facts of the science. The definitions here given, are
given once for all. It is thought that the pupil can obtain his first
conception of a geometrical fact, as well, at least, from a correct,
scientific statement of it, as from some crude, collogquial form, the
language of which he will be obliged to replace by better, after the
former shall have become so firmly fixed in his mind, as not to be
eagily eradicated. No attempt at demonstration is made in this part,
although most of the fundamental facts of Elementary Plane Geom-
etry are here presented, and amply and familiarly illustrated. This
course has been taken in obedience to the canon of the teacher’s art,
which prescribes ¢ facts before theories.” Moreover, such has been
the historic order of development of this, and most other sciences;
viz., the fhcts have been known, or conjectured, long before men have
been able to give any logical account of them. And does not this
indicate what may be the natural order in which the individual mind
will receive science? When the student has become familiar with
the things (concepts) about which his mind is to be occupied, and
knows some of the more important of their properties and relations,
he is better prepared to reason upon them.

ParT II. contains all the essential propositions in Plane, Solid, and
Spherical Geometry, which are found in our common text-books, with
their demonstrations. The subject of triedrals and the doctrine of
the sphere are treated with more than the ordinary fullness. The
earlier sections of this part are made short, each treating of a single
subject, and the propositions are made to stand out prominently. At
the close of each section are Exzercises designed to illustrate and
apply the principles contained in the section, rather than to extend
the pupil’s knowledge of geometrical facts. These features, together
with the synopses at the close of the sections, practical teachers can-
not fail to appreciate.

Parr IIL, which is contained only in the University Edition, has
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been written with special reference to the needs of students in the
University of Michigan. Our admirable system of public High-
Schools, of which schools there is now one in almost every consid-
erable village, promises ere long to become to us something near
what the German Gymnasia are to their Universities. In order to
promote the legitimate development of these schools, it is necessary
that the University resign to them the work of instruction in the
elements of the various branches, as fast and as far as they are pre-
pared in sufficient numbers to undertake it. It is thought that
these schools should now give the instruction in Elementary Geom-
etry, which has hitherto been given in our ordinary college course.
The first two parts of this volume furnish this amount of instruc-
tion, and students are expected to pass examination upon it on their
entrance into the University. This amount of preparation enables
students to extend their knowledge of Geometry, during the Fresh-
man year in the University, considerably beyond what has hitherto
been practicable. As a text-book for such students, Part IIL has
been written. At this stage of his progress, the student is prepared
to learn to investigate for himself. Hence he is here furnished with
a large collection of well classified theorems and problems, which
afford a review of all that has gone before, extend his knowledge of
geometrical truth, and give him the needed discipline in original
demonstration. To develop the power of independent thought, is
the most difficult, while it is the most important part of the teach-
er’s work. Great pains have therefore been taken, in this part
of the work, to render such aid, and only such, as a student ought to
require in advancing from the stage in which he has been follow-
ing the processes of others, to that of independent reasoning. In
-the second place, this part contains what is usually styled Applica-
. tions of Algebra to Geometry, with an extended and carefully selected
range of examples in this important subject. A third purpose has
been to present in this part an introduction to what is often spoken
- of ag the Modern Geometry, by which is meant the results of modern
thought in developing geometrical truth upon the direct method.
While, as a system of geometrical reasoning, this Geometry is not
philosophically different from that with which the student of Euclid
is familiar, and which is properly distinguished as the special or direct
method, the character of the facts developed is quite novel. So
much 8o, indeed, that the stndent who has no knowledge of Geometry
but that which our common text-books furnish, knows absolutely
. nothing of the domain into which most of the brilliant advances of
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the present century have been made. He knows not even the terms
in which the ideas of such writers as PONCELET, CHASLES, and SAL-
MON, are expressed, and he is quite as much a stranger to the thought.
In this part are presented the fundamental ideas concerning Loci,
Symmetry, Mazima and Minima, Isoperimelry, the theory of Trans-
versals, Anharmonic Ratio, Polars, Radical Axes, and other modern
views concerning the circle.

PArT IV. is Plane and Spherical Trigonometry, with the requisite
Tables. While this Part, as a whole, is much more complete than the
treatises in common use in our schools, it is so arranged that a shorter
course can be taken by such asdesire it. Thus, for a shorter course in
Plane Trigonometry, see NoTE on page 55. In Spherical Trigono-
~ metry, the first three sections, either with or without the Infroduc-

tion on Projection, will afford a very satisfactory elementary course.

A few words as to the manner in which this plan has been executed,
may be important. In general, the Definitions are those usually given,
with such slight alterations as have been suggested by reflection and
experience. There are, however, a few exceptions. Among these is
the definition of an Angle. I can but regard the attempt to define
an angle a8 The difference in direction between two lines, or The
amount of divergence, a3 needlessly vague, abstract, and perplexing
to a student, as well as questionable on philosophical grounds. The
definition given in the text will be seen to be, at bottom, the old
one, the conception being slightly altered to bring it into more close
connection with common thought, and also with the idea of an angle
as generated by the revolution of a line. As to Parallels, and the
definition of similarity, my experience as a teacher is decidedly in
favor of retaining the old notions. So also in adopting a definition
of a Trigonometrical Function, I am compelled to adhere to the
geometrical conception. A ratio is a complex concept, and conse-
quently not so easy of application as a simpie one. For this reason,
among others, I prefer the differential to the differential coefficient,
in the calculus, and a line to a ratio, in Trigonometry. Moreover, I
have found that students invariably rely upon the geometrical con-
ception, even when first tanght the other; hence I am not surprised
that all our writers who define a trigonometrical function as a ratio,
hasten to tell the pupil what it means, by giving him the geometrical
illustrations. Nor are the superior facility which the geometrical
conception affords for a full elucidation of the doctrine of the signs
of the functions, and its admirable adaptation to fix these laws in the
mind, considerations to be lost sight of in selecting the definition.
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Surely no apology is needed, at the present day, for introducing
the idea of motion into Elementary Geometry, notwithstanding the
rigorous and disdainful manner with which its entrance was long re-
sisted by the old Geometers. And, having admitted this idea, the
conception of loci as generated by motion would seem to follow as a
logical necessity. In like manner, I take it, the Infinitesimal
method must come in. Its directness, simplicity, and necessity in
applied mathematics, demand its recognition in the elements. In
two or three instances, I have presented the reductio ud absurdum,
where the methods are equivalents, and have always in presenting the
infinitesimal method woven in the idea of Zimits, which I conceive to
‘be fundamentally the same as the infinitesimal. Thus we bring the
lower and higher mathematics into closer connection.

The order of arrangement in Plane Geometry (Chap. L), is thought
to be simple, philosophical, and practical. A glance at the table of
contents will show what it is. This arrangement secures the
very important result, that each section presents some particular
method of proof, and holds the student to it, until it is familiar.
True, it requires that a larger number of propositions be demonstrated
from fundamental truths; but who will consider this an objection ?

To such as consider it the sole province of geometrical demonstra.:
tion, to convince the mind of the truth of a proposition, not a few
theorems in these and ordinary pages must seem quite superfluous. To
them, Prop. L., page 121, may afford some merriment. But those who,
with myself, consider Geometry as a branch of practical logic, the
aim of which is to detect and state the steps which actually lie be-
tween premise and conclusion, will see the propriety of such demonstra-
tions; and for each individual of the other class, a separate treatise
will be needed, since no two minds will intunitively grant exactly the
same propositions.

To Ex-President HiLL, of Harvard, I am indebted for the confir-
mation of an opinion which had been previously forming in my mind,
that the study of Geometry as a branch of logic, should be preceded
by a presentation of its leading facts. The works of CoMPAGNON,
TAPPAN, and our lamented countryman, CHAUVENET, have been
within reach during the entire work of preparation, and this volume
would have been different, in some respects, if any one of these able
treatises had not appeared before it.

In the preparation of Parr IIL the works of Roucnf et CoMBE-
RoUSSE and MULCAHY have been freely used. For the very concise
and elegant form in which the principle of Delambre, for the pre-
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cise calculations of Trigonometrical Functions near their limits, is
embodied in TABLE IIL, I am indebted to the recent work of Presi-
dent ELI T. TAPPAN, of Kenyon College, Ohio.

My long and intimate intercourse with Professor G. B. MERRIMAN,
now of the department of Physics in the University, has been a
source of great profit to me in the preparation of the entire work.
His sound, practical judgment as a teacher of Geometry, and culti-
vated taste and skill as a Mathematician, have been ever at my ser-
vice, and have done more than I can tell, in giving form to the work,
both as respects its matter and its spirit.

EpwArp OLNEY.
UNIVERSITY OF MICHIGAN,
ANN ARBOR, January, 1872.
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SPECIAL OR ELEMENTARY

GEOMETRY.

INTRODUCTION.

SECTION [
LOGICO-MATHEMATICAL TERMS,*

1. 4 Proposition is a statement of something to be considered:
or done. .

ILL.—Thus, the common statement, “ Life is short,” is a proposition; so,.
also, we make, or state a proposition, when we say, “ Let us seek earnestly after:
truth.”—* The product of the divisor and quotient, plus the remainder, equals-
the dividend,” and the requirement, “ To reduce a fraction to its lowest terms,””
are examples of Arithmetical propositions.

2. Propositions are distinguished as Azioms, Theorems, Lemmas,.
Corollaries, Postulates, and Problems.

3. An Aaxiom is a proposition which states a principle that.
is so simple, elementary, and evident as to require no proof.

ILL.—Thus, “ A part of a thing is less than the whole of it,” “ Equimultiples:
of equals are equal,” are examples of axioms. If any one does not admit the
truth of axioms, when he understands the terms used, we say that his mind is
not sound, and that we cannot reason with him.

4. A Theorem is a proposition which states a real or supposed.
fact, whose truth or falsity we are to determine by reasoning.

ILL.—*“If the same quantity be added to both numerator and denominator-
of a proper fraction, the value of the fraction will be increased,” is a theorem.
It is a statement the truth or falsity of which we are to determine by a course:
of reasoning.

* That is, terms ueed in the science in consequence of its logical character. The science of
the Pure Mathematics may be considered as a department of practical logic.
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5. A Demonstration is the course of reasoning by means
of which the truth or falsity of a theorem is made to appear. The
term is also applied to a logical statement of the reasons for the
processes of a rule. A solution tells zow a thing is done: a demon-
stration tells why it is so done. A demonstration is often called

proof.

6. A Lemma is a theorem demonstrated for the purpose of
using it in the demonstration of another theorem.

ILL.—Thus, in order to demonstrate the rule for finding the greatest common
divisor of two or more numbers, it may be best first to prove that *“ A divisor
of two numbers is a divisor of their sum, and also of their difference.” This
theorem, when proved for such a purpose, is called a Lemma.

The term Lemma is not much used, and is not very important, since most
theorems, once proved, become in turn auxiliary to the proof of others, and
hence might be called lemmas.

7. A Corollary is a subordinate theorem which is suggested,
or the truth of which is made evident, in the course of the demon-
stration of a more general theorem, or which is a direct inference
from a proposition.

ILL.—Thus, by the discussion of the ordinary process of performing subtrac-
tion in Arithmetic, the following Corollary might be suggested: * Subtraction

may also be performed by addition, as we can readily observe what number
must be added to the subtrahend to produce the minuend.”

8. A Postulate is a proposition which states that something
can be done, and which is so evidently true as to require no process
of reasoning to show that it is possible to be done. We may or may
not know how to perform the operation.

ILL.—Quantities of the same kind can be added together.

9. A Problem is a proposition to do some specified thing, and
is stated with reference to developing the method of doing it.

ILL.—A problem is often stated as an incomplete sentence, as, “ To reduce
fractions to a common denominator.”—This incomplete statement means that
“ We propose to show how to reduce fractions to a common denominator.”
Again, the problem “ To construct a square,” means that ** We propose to draw
a.figure which is called a square, and to tell how it is done.”

10. A Rule is a formal statement of the method of solving a
general problem, and is designed for practical application in solving
special examples of the same class. Of course a rule requires a
demonstration.

.
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11. A Solution is the process of performing a problem or an
example. It should usually be accompanied by & demonstration of
the process.

12. A Scholium is a remark made at the close of a discussion,
and designed to call attention to some particular feature or features
of it.

ILL.—Thus, after having discussed the subject of multiplication and division

in Arithmetic, the remark that * Division is the converse of multiplication,” is
& scholium.

SYNOPSIS.

Bubject of the section. Lemma. IU. Why the term is unim-
Proposition. I, . portant.
Varieties of propositions. Corollary. IU.
Axiom. IU. Postulate. IU.
One who will not admit the truth | Problem. How stated. I&

of axioms. Rule.
Theorem. I Solution.
Demonstration. Difference between | Scholium. 1%

a solution and a demonstration.

SECTION II.

THE GEOMETRICAL CONCEPTS.*

POINTS.

13. A Point is a place without size. Points are designated by
letters.

ILL.—If we wish to designate any particular point (place) on the paper, we
put a letter by it, and sometimes a dot on it. Thus,

in Fig. 3, the ends of the line, which are points, are v E
fesignated as “ point A,” “ point D ;" or, simply,

as A and D. The points marked on the line are

designated as “ point B,” “point C,” or as B and 4 B < T b

C. F and E are two points above the line. Fie. 8.

* A concept is & thing thonght abount :—a thought-object. Thus, in Arithmetic, namber is
the concept ; in Botany, piants; in Geometry, as will appear in this section, pointe, lines, and
solids. These may aleo be said to constitate the subject-matler of the sc\ence.
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LINES.

14. A Line is the path of a point in motion. Lines are repre-
sented upon paper by marks made with a pen or pencil, the point of
the pen or pencil representing the moving point. A line is desig-
nated by naming the letters written at its extremities, or somewhere
upon it.

ILL.—In each case in Fig. 4, conceive a point to start from A and move along
the path indicated by the mark to B. The path
thus traced is a line. Since a true point has ns
size, a line has no breadth, though the marks by
which we represent lines have some breadth.
The first and third lines in the figure are each
designated as “the line AB.” The second line
is considered as traced by a point starting from
A and coming around to A again, so that B and A
coincide. This line may be designated as the
line AmnA, or AmnB. In the fourth case, there
are three lines represented, which are designated,
respectively, as AmB, AnB, and AcB; or, the
last, as AB.

0 15. Lines are of Two Kinds,
A B Straight and Curved. A straight line is
7~ 4 also called a Right Line. A curved line

is often called simply a Curve.

16. A Straight Line* is a line
traced by a point which moves constantly
in the same direction.

Fie, 4.

17. A Curved Line is a line traced by a point which con-
stantly changes its direction of motion.

ILv's—Thus in 1, Fig. 4, if the line AB is conceived as traced by a point
moving from A to B, it is evident that this point moves in the same direction
throughout its course; hence AB is a straight line. If a body, as a stone, be
let fall, it moves constantly toward the centre of the earth; hence its path
represents a straight line. If a weight be suspended by a string, the string
represents a straight line. Considering the line represented by AB, Fig. 4, as
the path of a point moving from A to B, we see that the direction of motion is
constantly changing. For example, if this were a line traced on a map, we

* The word *“ line" used alone signifies ** straight line.”
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wbuld say, that, starting from A, the point begins to move nearly north, but
keeps changing its direction more and more toward the east, until at 8 it moves
directly ecast; and from 8 it continues to change its course and moves
more and more toward the south, till at 7 it is moving directly south. The
same general truth is illustrated in 2 and 4, Fig. 4. The path of a ball thrown
into the air, in any direction except directly up, represents a curved line. Most

of the lines seen in nature are curved, as »
the edges of leaves, the shore of a river 7e

or lake, etc. Sometimes a path like that

represented in Fig. 5 is called, though im- 4~ 7o
properly, a Broken Line. It is not a line Fre. 5.

at all; that is, not one line : it is a series of straight lines.

SURFACES.
18. A Surface is the path of a line in motion.*
19. Surfaces are of Two Kinds, Plane and Curved.

20. A Plane Surface, or simply a Plane, is a surface with
which a straight line may be made to coincide in any direction.
Such a surface may always be conceived as the path of a straight
line in motion.

21. A Curved Surface is a surface in which, if lines are
conceived to be drawn in all directions, some or all of them will
be curved lines. ;

Irv's.—Let AB, Fig. 6, be supposed to move to the right, so that its extremi-
ties A and B move at the same rate and in the
same direction, A tracing the line AD, and B, the
line BC. The path of the line, the figure ABCD,
is a surface. This page is a surface, and may be
conceived as the path of a line sliding like a ruler
from top to bottom of it, or from one side to the
other. Such a path will have length and breadth, A ;
being in the latter respect unlike a line, which has Fia. 6.
only length.

As a second illustration, suppose a fine wire bent into the form of the
curve AmB, Fig. 7,and its ends A and B stuck into a rod, XY. Now, taking the
rod XY in the fingers and rolling it, it is evident that the path of the line
represented by the wire AmB, will be the surface of a ball (sphere).

B

* Should it be said that irregnlar surfaces are not included in this definition, the sufficient
reply is, that such surfaces are not subjects of Geometrical investigation, except approxi-
mately, by means of regular ‘surfaces.
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Again, suppose the rod XY be placed on the surface of this paper so
that the wire AmB shall stand straight up
from the paper, just as it would be if we
could take hold of the curve at m and raise
it right up, letting XY lie as it does in the
figure. Now slide the rod straight up or

: down the page, making both ends move at the -

XA Fio. 1. B'Y  samerate. The path of AmB will be like the

: surface of a hglf-round rod (a semi-cylinder).

Thus we see how surfaces plane and curved may be conceived as the paths of
lines in motion.

7= Ex. 1. If the curve AnB, Fig. 8,
be conceived as revolved about
the line XY, the surface of what

XA . B Y object will its path be like?
16. 8.

M Ex. 2. If the figure OMNP, F%g. 9, be
conceived as revolved about op, what kind
of a path will MN trace? What kind of
paths will PN and OM trace?

Ans. One path will be like the surface
of a joint of stove-pipe, 7. e, a cylindrical
surface; and one will be like a flat wheel,
1. e, & circle.

Fie. 9.

Ex. 3. If you fasten one end of a cord at a point in the ceiling and
hang a ball on the other end, and then make the ball swing around
in a circle, what kind of a surface will the string describe ?

[NoTe.—The student is not necessarily expected to give the geometrical
name of the surface, but rather to tell in his own way what it is like, 80 as to
make it clear that he conceives the thing itself.]

Ex. 4. If yoﬁ were to draw lines in all directions on the surface of
the stove-pipe, might any of them be straight? Could all of them
be straight ? What kind of a surface is this, therefore ?

Ex. 5. Can you draw a straight line on the surface of a ball? On
the surface of an egg ? What kind of surfaces are these ?

Ex. 6. When the carpenter wishes to make the surface of a board
perfectly flat, he takes a ruler whose edge is a straight line, and lays
this straight edge on the surface in all directions, watching closely
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to see if it always touches. Which of our definitions is he illus-
trating by his practice ?

Ex. 7. When the miller wishes to make flat the surface of one of
the large stones with which wheat is ground into flour, he sometimes
takes a ruler with a straight edge, and smearing the edge with paint,
applies it in all directions to the surface, and then chips off the stone
where the paint is left on it. What principles is he illustrating ?

Ex. 8. How can you conceive a straight line to move so that it
shall not generate a surface ?

ANGLES.

22. A Plane Angle, or simply an Angle, is the opening be-
tween two lines which meet each other. The point in which the
lines meet is called the vertex, and the lines are called the sides.
An angle is designated by placing a letter at its vertex, and one at
each of its sides. In reading, we name the letter at the vertex when
there is but one vertex at the point, and the three letters when there
are two or more vertices at the same point. In the latter case, the
letter at the vertex is put between the other two.

ILL.—In common language an

angle is called a corner. The B
opening between the two lines

AB and AC, in which the figure 1 A<Z fo el
stands, is called the angle A; or, c

if we choose, we may call it the
angle BAC. At L there are two

vertices, so that Were we to say E R
the angle L, one would not know
whether we meant the angle (cor- p 4 Y T
ner) in which 4 stands, or that in
which § stands. To avoid this

ambiguity, we say the augle HLR S

for the former, and RLT for the

latter. The angle ZAY is the cor- 7
ner in which 11 stands; that is, P J K
the opening between the two p
lines AY and AZ. In designating J z
an angle by three letters, it is im- v ¥
material which letter stands first

so that the one at the vertex is ‘9,0 w £ AK

put between the other two. Thus, X
PQS and SQP are both designa- Fre. 10/

tions of the angle in which 6
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stands. An angle is also frequently designated by putting a letter or figure in
it and near the vertex.

23. The Size of an Angle depends upon the rapidity with
which its sides separate, and not upon their length.

ILL.—The angles BAC and MON, Fig. 10, are equal, since the sides separate
at the same rate, although the sides of the latter are more prolonged than those
of the former. The sides DF and DE separate faster than AB and AC, hence the
angle EDF is greater than the angle BAC.

24. Adjacent Angles are angles so situated as to have a com-
mon vertex and one common gide lying between them.

ILL.—In Fig. 10, angles 4 and 5 are adjacent, since they have the commeon
vertex L, and the common side LR. Angles 9 and 10 are also adjacent, as are
also 8 and 9.

25. Angles are distinguished as Right Angles and Oblique Angles.
Oblique angles are either Acufe or Obfuse.

26. A Right Angle is an angle included between two straight
lines which meet each other in such a manner as to make the adja-
cent angles equal. A4n Acute Angle is an angle which is less
than a right angle, 7. e, one whose sides separate less rapidly.
An Obtuse Angle is an angle which is greater than a right angle,
“. e., one whose sides separate more rapidly.

B ILL.—As in common language an angle is called
a corner, 80 a right angle is called a square corner ;
an acute, a sharp corner; and an obtuse angle might
be called a blunt corner. In Fig. 11, BAC and
DAB are right angles. In Fig. 10, 1, 2, 8, 5,8, 9,
and 10 are acute angles, 4 and 6 are obtuse, and 7 is
a right angle.

Fie. 11.

A SOLID.

27. A Solid is a limited portion of space. It may also be con-
ceived as the path of a surface in motion.

IrrL.—Suppose you have a block of wood like that represented in Fig. 12,
with all its corners (angles) square corners (right angles). Hold it still in your
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fingers a moment, and fix your mind c -
upon it. Now take the block away and |
think of the space (place) where it was.
This space will be of just the same form
as the block of wood, and by a little ef-
fort you can think of it just as well as of B
the wood. This space is an example of
what we call a Solid in Geometry. In A
fact, the solids of Geometry are not solids Fre. 12.

at all in the common sense of solids ; they are only just places of certain shapes.

Again, hold your ball still a moment in your fingers and then let it drop, and
think of the place it filled when you had it in your fingers. It is this place,
shaped just like your ball, that we think about, and talk about as a soléd, in
Geometry.

In order to see how a solid may be conceived as the path of a surface, sup-
pose you cut out a piece of paper of just the same size as the end of the block
represented in Fig. 12. Let ABCD represent this piece of paper. Now, holding
the paper in a perpendicular position, as ABCD is represented in the figure,
move it along to the right, so that its angles shall trace the lines AG, BH, DE,
and CF. When the paper has moved to the position GHFE, its path will be
just the same space as the block of wood occupied. This path, or the space
through which the surface represented by the piece of paper moved, is the solid.

X

Ex. 1. If a semicircle is conceived as revolved around its diameter,
what is the path through which it moves? See Fig. 7.

Ex. 2. If the surface OMNP, Flig. 9, is conceived asrevolved around
oP, what is the path through which it moves ?

CavutioN.—The student needs to be careful and distinguish between the
surface traced by the &ne MN, and the solid traced by the surface OMNP.

Ex. 3. If the surface represented by ABC be con-
ceived as revolved about its side CA, what kind of
a solid is its path ?

[Notk.—As has been said before, the student is not
necessarily expected to name these solids, but rather to
show, in his own language, that he has the conception.]

Ex. 4. As you fill a vessel with water, what is the A
solid traced by the surface of the water ?
Ans. The same as the space within the vessel.

F:a. 13.

Ex. 5. If a circle is conceived as lying horizontally, and then
moved directly up, what will be the solid described, <. e., its path ?
Do not confound the surface described with the solid. What de-
scribes the surface ? What the solid ?
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EXTENSION AND FORM.

28. Fxtension means a stretching or reaching out. Hence, a
Point has no extension. It has only position (place). A Line
stretches or reaches out, but only in length, as it has no width.
Hence, a line is said to have One Dimension, viz., length. A Surface
extends not only in length, but also in breadth; and hence has
Two Dimensions, viz., length and breadth. A Solid has Three D:-
mensions, viz., length, breadth, and thickness,

ILL.—Suppose we think of a point as capable of stretching out (extending)
in one direction. It would become a line. Now suppose the line to stretch out
(extend) in another direction—to widen. It would become a surface. Finally,
suppose the surface capable of thickening, that is, extending in another direc-
tion. It would become a solid.

29. The Limits (extremities) of a line are points.
The Limits (boundaries) of a surface are lines.
The Limaits (boundaries) of a solid are surfaces.

30. Magnitude (size) is the result of extension. Lines, sur-
faces, and golids are the geometrical magnitudes. A point is not a
magnitude, since it has no size. The magnitude of a line is its
length; of a surface, its area ; of a solid, its volume.

31. Figure or Form (shape) is the result of position of
points. The form of a line (as straight or curved) depends upon the
relative position of the points in the line. The form of a surface (as
plane or curved) depends upon the relative position of the points
in it. The form of a solid depends upon the relative position of the
points in its surface. Lines, surfaces, and solids are the geometrical
figures.*

ILL.—In Fig. 14, it is easy to conceive the form of the lines by knowing the
position of points in the lines. By taking a

/\\\ e quantity of common pins of different lengths,

AN sticking them upright in a board, and conceiv-
\ ing the heads to represent points in a surface,
i we can readily see how the position of the points
. / in a surface determine its form,
Fre. 14. !

Ex. 1. Suppose a line to begin to con-

* Lines, surfaces. and golids are called magnitudes when reference iz had to their extent,
and figures when reference is had to their form.
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tract in length, and continue the operation till it can contract no
longer, what does it become ? That is, what is the minor limit of a
line ?

Ex. 2. If a surface contracts in one dimension, as width, till it
reaches its limit, what does it become ? If it contracts to its limit
in both dimensions, what does it become ?

Ex. 3. If a solid contracts to its limit in one dimension, what does
it pass into? If in two dimensions? If in three dimensions ?

Ex. 4. What kind of a surface is that, every point in which is
equally distant from a given point ?

32. Geometry treats of magnitude and form as the result of
extension and position.
The Geometrical Concepts are points, lines, surfaces (including
plane and spherical angles), and solids (including solid angles).
The Object of the science is the measurement and comparison of
these concepts. _
Plane Geometry treats of figures all of whose parts are confined to one plane.
~ Bolid @eometry, called also Geometry of Space, and Geometry of Three Dimensions,
treats of figures whose parts lie in different planes. The division of Part IL
into two chapters is founded upon this distinction. In the Higher or General

Geometry these divisions are marked by the terms “ Of Loct #n a Plane,” and
“ Of Loct in Space.”

SYNOPSIS.
[ What.—How designated.—1il.
PoINT....< Dimensions of.
Limit of Line.—Surface.—Solid.

[ What.
How designated.
Dimensions of.
LiNE..... <{ Limit of Surface.
Straight.—What.—I%,
Kinds«z Curved.—What.—IU.
L Broken (?).
[ What.
Dimensions of.
Limit of %(l)lid. Wh p.
SURFACE..< ane.—What.—1U.
Kinds { Curved.—What.—1U.
‘What.—8ize depends on what.—Adjacent.
LAngle { Right.—WlAat.—Ill.w N m
i . cute.—What.—
Oblique { Obtuse.—What.—Il,

GEOMETRICAL CONCEPTS.

( SoLID.. ... What.—Ji.—Examples.

Magnitude.— What.—Result of what.
Treats of { Figure or form.—What.—Result of what.
Concepts.—What.

GEOMETRY.. {
Object.—What.



PART I

A FEW OF THE MORE IMPORTANT FACTS OF THE
SCIENCE.

SECTION I
ABOUT STRAIGHT LINES.

33. Prob.—~To measure a straight line with the dividers and
scale.

SoruTioN.—Let AB, Fig. 15, be the line to be measured. Take the dividers,
Fig. 2 (frontispiece), and placing
the sharp point A firmly upon
the end A of the line AB, open
the dividers till the other point -
—F B (the pencil point) just reaches
the other end of the line B.
Then letting the dividers re-
1 —K main open just this amount,
Fia. 15. place the point A on the lower
end of the left hand scale, as at o, Fig. 1, and notice where the point B reaches.
In this case it reaches 3 spaces beyond the figure 1. Now, as this scale is
inches and tenths of inches,* the line AB is 1.3 inches long.

>

m O
o

9
T

£x. 1. What is the length of cD ? Ans. .15 of a foot.
Ex. 2. What is the length of EF ? Ans. .75 of an inch.
Ex. 3. What is the length of GH? Ans. 1% inches.
Ex. 4. What is the length of IK ? Ans. .18 of a foot.

EX. 5. Draw a line 3 inches long.

EX. 6. Draw a line 2.15 inches long.
Ex. 7. Draw a line 1.25 inches long.
EX. 8. Draw a line .85 of an inch long.

* The next scale ‘o the right is divided into 10ths and 100ths of a foot. Thus from » to ¢
1 tent) of 3 fovt. axd the smaller divisions are hundredths.
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[NoteE.—Suppose a fine elastic cord were attached by each of its ends to the
points A and B of the dividers; when they were opened so as to reach from
Cto D, Fig. 15, the cord would represent the line CD. Now applying the di-
viders to the scale is the same as laying this cord on the scale. Without the
cord, we can imagine the distance between the points of the dividers to be a line
of the same length as CD.]

Ex. 9. Find in the same way as above the length and width of this
page. Also the distance from one corner (angle) to the opposxte one
(the diagonal).

34. Prob.—To find the sum of two lines.

SoruTiOoN.—To find the sum of AB and CD, I* first draw the indefinite line
Ez. With the dividers I obtain the length of AB, by placing one point on A
and extending the other to B. A— B
This length I now lay off on the
indefinite line Ez, by putting one
point of the dividers at E and E +
with the other marking the point F16. 16.
F. EF is thus made equal to AB.

In the séame manner taking the length of CD with the dividers, I lay it off from
F on the line Fz. Thus I obtain EG=EF + FG=AB+CD. Hence, the sum of
AB and CD is EC.

Ct————D

[Nore.—The student may measure EG by (33) and find the sum of AB and
CD in inches or feet; but it is most important that he be able to look upon EG
as the sum itself.]

Ex. 1. Find the sum of AB and EF, Fig. 15.

Ex. 2. Find the sum of EF, CD, and GH, Fig. 15.

EXx. 3. Make a line twice as long as CD, Fig. 16. Three times a8
long. ’

35. Prob.—1To find the difference of two lines.

SoLuTiON.—To find the difference of AB and CD, I take the length of the
less line AB with the dividers ; and placing
one point of the dividers at one extremity
of CD, as G, make Ce=AB. Then is ¢eD ¢ < —iD
the difference of AB and CD, since ¢D = Fig. 17.

CD — Ce=CD — AB.

A —iB

Ex. 1. Find the difference of IK and EF, Fig. 15.
Ex. 2. Find the difference of GH and cD, Fig. 15.

* These elementary solutions are sometimes put in the singular, as the mare slmyple wty\e.
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Ex. 3. Find how much longer IK, Fig. 15, is than the sum of EF,
Fig. 15, and cD, Fig. 16.

Ex. 4. Find the difference of the sum of AB and CH, and the
sum of CD and EF, Fig. 15.

36. Prob.—To compare the lengths of two lines ; that is, to find
their ratio (approzimately*).

SoLuTioN.—To compare the lengths of AB and CD, I lay off AB, the shorter,
upon CD, as Ca. (If AB could be

Cr 7 & 7 ‘; -++D applied two or more times to CD,
I should apply it as many times as

F CD would contain it) Now I apply
Mty " the remainder of CD, viz., aD, to AB,
Fie. 18. as many times as AB will contain it,

which is once with the remainder 5B. This remainder I now apply to aD, and
find it contained once with a remainder ¢D. Again, I apply this last remainder
to 5B, and find it contained twice with a remainder dB. This last remainder I
now apply to ¢D, and find it contained 8 times, without any remainder. This
last measure, dB, is a common measure of the two lines. Calling @B 1, I now
observe that

dB =1;
¢D =3dB=3;
bd =2D=86;
ac =B=0d +dB=17;
. aD = ac + oD =10;
AB =Ab + 0B = aD + ac =17;

CD =Ca + aD = AB + aD = 27.

Hence the lines AB and CD are to each other as the numbers 17 and 27; AB
is % of CD; or, expressed in the form of a proportion, AB : CD :: 17 : 27.

[NoTe.—This process will be seen to be the same as that developed in Arith-
metic and Algebra for finding the greatest or highest Common Measure of two
numbers, and should be studied in connection with a review of those processes.
See CoMPLETE ARITHMETIC (115), and CoMPLETE SCHOOL ALGEBRA (137).]

Ex. 1. Find, as above, the approximate ratio of AB to cD, Fig. 15.
Ratio, 13 : 18.

Ex. 2. Find, as above, the approximate ratio of cp and IK, Fig. 15.
Ratio, 5: 6.

* This method does not get the exact ratio, because of the imperfection of measurement, and
also because lines are sometimes incommensurable, &8 will appear hereafter,
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Ex. 3. Find, as above, the approximate ratio of EF to GH, Fig. 15.
Ratio, 1:2.

Ex. 4. Find, as above, the approximate ratio of EF to €D, F%g. 15.
Ratio, 5:12.

37. To Intersect is to cross; and a crossing is called an
Jntersection.

38. To Bisect anything is to divide it into two egual parts.
39. Prob.—To bisect a given line.

SoLuTiON.—To bisect the line AB, I take the dividers; and opening them
80 that the line between their points is more than
half as long as AB, I place the sharp point A on )fw
the point A, and holding it firmly there, make a
little mark with the pencil point B, as nearly as I
can guess, opposite the middle of the line. Then,
being careful to keep the dividers open just the x (o) B
same, I place the sharp point on B, and make a
mark intersecting the first one, as at m. Now,

doing just the same on the other side of the line,
I make two marks intersecting each other, as at n.
Finally, I draw a line from m to n, and where this Fra. 19.

line crosses AB is its middle point; that is, AO is equal to OB. [Why this is
so we do not propose to tell now. The student needs only to learn how to do
it. He should measure AO and OB, and thus test the accuracy of his work.]

Ex. 1. Is it necessary that the dividers be opened just as wide
when the marks are made through n, as when they are made
through m? Try it.

Ex. 2. Suppose you make the marks through m as directed, but,
in making those through 7, you have the
dividers wider open when you put the point
on A than when you put it on g8; will the
line joining m and 7z then cross AB in the
middle? If not, on which side of the mid-
dle will 0 be? Try it.

Ex. 3. Can you bisect a line by making
the marks all on one side of it ? If so, do it.

A o B
Fie. 20.
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40. Axtom>—A straight line 13 the shortest path between two
points.

ILL—If a cord is stretched across the table, it marks a straight line. In this
way the carpenter marks a straight line. Having rubbed a cord, called a chalk-
line, with chalk, he stretches it tightly from one point to another on the surfaces
upon which he wishes to mark the line, and then raising the middle of the
cord, lets it snap upon the surface. 8o the gardener makes the edges of his
paths straight by stretching a cord along them. These operations depend upon
the principle that when the line between the points is the shortest possible, it
is straight.

41. Axiom.—Two points in a straight line determine its
position.

Irn.—If the farmer wants a straight fence built, he sets two stakes to mark
its ends. From these its entire course becomes known. This is the principle
upon which aligning (or sighting) depends. Having given two points in the
required line, by looking in the direction of one from the other, we look along a
straight line, and are thus able to locate other points in the line. If the points

A and B are marked, hy

< putting the eye at A and
@A o) ] ¢ € looking steadily towards
c” B, we can tell whether D

Fie. 21. and E are in the same

straight line with A and B, or not. So we can observe that C’ and C” are not
in the line; but that C is. This process of discovering other points in a line
with two given points is called aligning, or sighting. In this way a row of
trees is made straight, or a line of stakes set. It is the principle upon which
the surveyor runs his lines, and the hunter aims his gun. In the latter case,
the two sights are the given points, and the mark, or game, is a third point,
which the marksman wishes to have in the same straight line as the sights.

42, Aaxiom.—Between the same two points there is one straight
line, and only one.

IrLL.—Let any two letters on this page represent the situation of two points ;
we readily see that there is one, and omly one, straight path between them.
Again, let a corner of the desk represent one point and a corner of the ceiling
of the room represent another point ; we perceive at once that, if a point is
conceived to pass in a straight line from one to the other, it will always trace

* An axiom may be illustrated, but it needs no demonstration. We may explain the terms
used and elaborate the condenesed statement ; but if, when its meaning is clearly understood,
any one does not grant the {ruth of its statement, he has not a sound mind, and we cannot

, reason with him.
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.

the same path. In short, as soon as two points are mentioned, we think of the
distance between them as a single straight line,—for example, the centre of the
earth and the centre of the sun.

Once more, conceive A and B, Fig. 21, to be two points in the path of a point
moving from A in the direction of B. Now all the points in the same direction
from A as B is, are in this path ; and any point out of this line, as C’ or C”, is
in a different direction from A.

In this manner we draw a straight line on paper by laying the straight edge
of a ruler on two points through which we wish the line to pass, and passing a
pen or pencil along this edge.

Cor.—Two straight lines can intersect in but one point; for, if
they had two points common, they would coincide and not intersect.

Ex. 1. A railroad is to. be run from the town A to town B. Ifit is
made straight, through what points will it pass? Can it pass through
any points not in the same direction from A as B is ?

Ex. 2. If I live on the south side of a straight railroad, and my
friend on the north side, but five miles farther east, and two miles
farther north, and the road from my house to his is straight, how
many times does it cross the railroad ?

Ex. 3. Can you always draw a straight line which shall cut a.
curve (whatever curve it may be) in two points? Try it.

Ex. 4. Detroit is directly east of where I live. How could I drive-
my horse there and never turn his head to the east? Would he have-
to travel in straight lines or in a curve? If I drive him on a curve,.
how can I manage it so that his head will be

east for but an instant? If his head is all /18\

the time east, what is the line in which I - !

drive him ? e .
8ve.—The figure will suggest how the first may Fie. 2. °

be accomplished.

43. A Perpendicular to a given line is a line which makes.
a right angle (26) with the given line. The latter is also perpen-
dicular to the former. Obligue Lines are such as are not perpen-
dicular to each other, and which meet if sufficiently extended.

Irnr.—In Fig. 11, BA is perpendicular to DC; so also AC is perpendicular to-

BA. In Fig. 10, KG and Kl are perpendicular to each other. The other lines.
in Fig. 10 are oblique to each other,
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44. Prob.—To erect a perpendicular to a given line at a given
point in the line.

SoLuTIoN.—Suppose I want to erect a perpendicular to the line XY, at the
point A. With the dividers I measure
off a distance AB on one side of the point
A, and an equal distance AC on the other
side. Then opening the dividers a little
wider, I put the sharp point on B and

X 8 A € Y make a mark with the pencil point, as

Fie. 23. at O, about where I think the perpen-

dicular will go. Then, keeping the dividers open just the same, I put the sharp

point on C, and make a mark intersecting the former one at 0. Now, drawing
& line through O and A, it is the perpendicular sought.

Ex. 1. Suppose I make a mistake and close up the dividers a
little after making the first mark through 0, and then make the sec-
ond mark ; which way will the line lean ? Will it be a perpendicu-
lar or an oblique line in this case? What kind of an angle would
OAY be? What 0AX? What kind of angles are these when OA is a
perpendicular ?

Ex. 2. Suppose I should mistake a point nearer to A than B was
taken, and use it as I did ¢, having the dividers open just alike when
I made the two marks through 0; which way would the line lean
(incline) ? (Same questions as in the last.)

ILL.—A carpenter wishes to get the
piece of timber AF at right angles to
MN, into which it is mortised at A. So he
ELD measures off AB and AC, equal distances
from A; and taking two poles of equal
length (say 10 feet long), has the end of one
held steadily at B and the end of the other
at C, and moves (racks, as he calls it) the
end F to the right or left until the ends E
B A ¢ z and D of the poles are exactly opposite, as

N in the figure. AF is then perpendicular to
Fie. 4. MN.

\3

45. Prob.—From a point without a given lineto draw a perpen-
dicular to the line.
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SoLuTION.—I wish to draw a perpendicular from O to the line XY. I first
open the dividers wide encugh, so that when I fo)
place the sharp point on O the pencil will mark
the line XY in two points, as B and C, when it
swings around. Marking these two points, I
put the sharp point first on B and afterward on B
C, keeping them open just alike in both cases, ¢ > A c
and make the two marks intersecting at D.
Placing the straight edge of the ruler on the
points O and D, I draw the line OA along its X
edge. OA is the perpendicular required.

Fig. 25.

Ex. 1. Let fall a perpendicular from a point, as 0, upon a straight
line, as XY, without making any marks on the opposite side of XY
from o.

Ex. 2. A mason wishes to build a
wall from 0,in the wall AB,“ straight
across” (perpendicular) to the wall
CD, which is 8 feet from AB. He has
only his 10-foot pole, which is subdi- C EEmtEmEpam
vided into feet and inches, with which Fie. 2.
to find the point in the opposite wall at which the cross wall must
join. How shall he find it ?

T o1 112

SECTION 11
ABOUT CIRCLES.
46. A Circle is a plane surface bounded by a curved line every
point in which is equally distant from a point within.

47. The Circumference of a Circle is the curved line every
point in which is equally distant from a point within.

48. The Centre of a Circle is the point within, which is
equally distant from every point in the circumference.

49. An Arc is a part of a circumference.

50. A Radius is a line drawn from the centre to any point
in the circumference of a Circle.

51. A Diameter of a Circle is a line passing through the
centre and terminating in the circumference.
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IrL.—A circle may be conceived as the path of a
line, like OB, Fig. 27, one end of which, O, remains
at the same point, while the other end, B, moves
around it in the plane (say of the paper). OB is the
Radius, and the path described by tbe point B is the
Circumference. AB is a diameter. In Fig. 28, the
curved line ABCDA (going clear around) is the Cir-
cumference, O is the Centre, and the space within the
circumference is the Circle. Any part of a circum-
ference as AB, or any of the curved lines BB, Fig. 27,
is an arc. So also AM and EF, Fig. 29, are arcs. EF
is an arc drawn from O’ as a centre, with the radius
0'B.

52. A Chord is a straight line joining
any two points in a circumference, but not
passing through the centre, as BC or AD,
Fig. 28. The portion of the circle included
between the chord and its arc, as AmD, is a
SEGMENT.

53. A Tangent to a circle is a straight
.y line which touches the circumference, but
Fio. 2. does not intersect it, how far soever the line
be produced.

54. A Secant is a straight line which intersects the circumfer-
ence in two points.

Ex. 1. Suppose DC, F%g. 11, to represent a small wooden rod, and
BA a wire stuck into it at right angles. Now if you take the end ¢
of the rod in your fingers and place the end D on the table so that
the rod shall stand upright, and then revolve the rod once around
like a shaft, what will the wire describe ? What the endB? What
any point in BA? If you only revolve the rod a little way, what will
the point B describe? What does BA represent ?

Ex. 2. If you take a string, oP, and hold one end at a particular
point, 0, on your slate or blackboard, while

with the other hand you hold the other

. o\ end, P, of the string upon the engd of
?@ pencil or crayon, and then move the end

— P around O, making a mark as it goes,
oo, 0. ~ what will the mark made represent when

the pencil or crayon has gone clear
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around ? What will the string represent? What is the surface
passed over by the string ?

Ex. 3. If you take the dividers, F%g. 1, and open them (say 2
inches), and then place the sharp point, A, firmly on the paper while
you turn them around, making the pencil point, B, mark the paper
a8 it goes, what kind of a line will be described ? What is the line
joining the points of the dividers ?* What line describes the cir-
cle? If the dividers only turn a little way, what is the line
described ?

Ex. 4. If a boy skating on the ice makes a curve which bends
everywhere just alike, what kind of a path will he make? Does
the boy describe a circle? How might you conceive the circle in-
closed by his path, as described ? Is a circle described by a point or
by a line ?

[Note.—The word “circle” is used in common language as equivalent to
“ circumference.” It is also thus used in General Geometry. But, however the

words may be used, the pupil should be taught to mark the distinction between
the plane surface inclosed and the bounding line.]

Ex. 5. In how many points can a straight line intersect a circum-
ference? In how many points can one circumference intersect
another ?

Ex. 6. There is a piece of ground in the form of a circle, the
radius of which is 100 rods, by which run two roads; one road
rans within 80 rods of the centre, and the other within 100 rods.
How do the roads lie with reference to the ground ?

Ex. 7. When you unwind a thread by drawing it off a spool in
the ordinary way, what geometrical line does the unwound thread
represent ?

Ex. 8. In a circle whose diameter is 50 feet, there are drawn two
chords, one is 20 feet long, and the other 30 feet. Which is nearer
the centre ?

Ex. 9. There are two circles whose radii are respectively 12 and
18 feet. The distance from the centre of one to the centre of the
other is 25 feet. Do the circumferences intersect? Would they in-
tersect if the centres were 3 feet apart? How would they lie in ref-
erence to each other in the latter case? How if their centres were
30 feet apart ? How if they were 35 feet apart ?

* The imagination may be aided by supposing a fine elastic cord stretched between the
points of the dividers and carried by them.
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Ex. 10. What kind of a line is represented by water flying from a
swiftly-revolving grindstone ?

Ex. 11. If you draw two chords in the same circle, one of which
is twice as long as the other, will the arc cut off by the longer chord
be twice as long as the arc cut off by the shorter? Will it be more
than twice as long, or less ?

55. Theorem.—The chord of « sizth part of the circumference
of a circle is just equal to the radius of the same circle.

ILL.—If I draw a circle, and then, being careful not to open or close the di-
viders, place the sharp point on the circumference
at some point, as A, and mark the circumference at
another point, as B, with the pencil point, and then
move the sharp point to B and mark again, as C, 1
find that when I have measured off six such chords,
each equal to the radius, I return exactly to A, the
point of starting.

Moreover, if I draw the chords AB, BC, etc., I
have aregular figure with six equal sides. A figure

Fie. 31. with six sides is called a hexagon. This hexagon is

called regular, because its sides are equal each to each, and its angles are also
mutually equal.

Again, if I unite the alternate angles of the regular hexagon, as FB, BD, and
DF, I have a regular triangle, called an equilateral triangle.

56. Inscribed Figures are figures drawn in a circle, and
having the vertices of all their angles in the circumference, as the
hexagon and triangle in the last illustration. When the figure is
without, and all its sides touch but do not cut the circumference, it
i8 circumscribed about the circle.

Ex. 1. Draw a regular hexagon whose side is two inches.

Ex. 2. Inscribe an equilateral triangle in a circle whose radius is
one inch.

87. Prob.—To find the centre of a circle when the circumference.
18 drawn (or, as we usually say, Anown).

SoLuTiON.—The circumference of my circle is drawn, but the centre is not
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marked. So I want to find the centre. I draw
any two chords, as AB and CD (the nearer they are
at right angles to each other the better for accu-
racy). I then bisect each chord with a perpen-
dicular, as AB with the perpendicular MN, and
CD with RS (39). The intersection of these two
perpendiculars, as O, is the centre of the circle.
[The pupil must do everything with his pencil,
ruler, and dividers, just as he says. He must not
be of those who “ say and do not.” He must do the Fia. 82
things told, “ over and over,” till he can do them neatly and easily.]

58. Prob.—To pass a circumference through three given poinis.

SoruTION.—I wish to pass a circumference through the three given points
A,B, and C. [The pupil should first designate three
points by dots on his paper, slate, or board, and then
proceed according to the solution.] In order to do this,
I join A and B with a line, and also B and C. I now
bisect these lines with the perpendiculars MN and RS,
as in the last problem. The intersection of these per-
pendiculars, O, is the centre of the required circle.
Now setting the sharp point of the dividers upon O and ,
opening them till the pencil point just reaches A (B or }1\

C will answer as well), I draw the circumference with Fic. 33.
O as its centre and the radius OA, and find that it passes through the three
given points A, B, and C.

Ex. 1. To pass a circumference through the three vertices of a
triangle, 7. e, to circumscribe a circumference about a triangle, as
this operation is technically called.

8ue.—This is just like the last, A, B, and C being the vertices of the triangle.
The four figures in the margin
represent the successive steps in oh
the solution. First draw the given GIVEN /
triangle. Then take the first step

X
in the asolution, then the second, qa

ete.

Ex. 2. Given the centre of
a circle and a point in the >¢
circumference, to draw the ,,m,.x
circle. ‘i

X 1w sTEP X ] X

. Sve.—Make a dot on the board ‘.’
to indicate the centre, and an- ‘.
other dot to indicate the point X

in the circamference to be found.
This is what js given. You are Fe. %
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then to draw the circumference, which shall pass through the latter pmnt. and
have the former for its centre.

Ex. 3. Draw an arc of a circle, and rub out the mark, if you make
any, at the centre, so that you cannot see where the centre is. Then
find the centre, and complete the circumference according to these
problems.

Sue.—Mark three points in the given arc, and then the example is just like
the last. [Do not fail to do it, “ over and over,” till you can do it quickly and
neatly. These exercises require much care in order to get good figures.]

59. Theorem.—The circumference of a circle is about 3.1416
times its diameter. The Greek letter m (called p) vs used to repre-
sent this number ; and hence the circumference 18 said to be m times
the diameter.

ILL.—The pupil can illustrate this fact by taking any wheel which is a true
circle, and measuring the diameter with a narrow band of paper (something
that will not stretch), and then wrapping this measure about the circumference.
He will find that it takes a Uttle more than three diameters to go around. Of
course he cannot tell exactly how much more. In fact, nobody knows exactly.
But the number given above is near enough for most purposes. For many pur-
poses 8} is sufficiently accurate.

By drawing a circle very carefully, say 1 inch in
diameter, as in the margin, and dividing the diameter
into 10ths inches, a nice pair of dividers can be
opened one 10th inch and made to step around the
circumference. If it is all done with nicety, it will be
found to be a little over 31 steps around, when it is
10 across.

J_6
£ Z.9

7 Ex. 1. The distance across a wagon-wheel
Fie. 85. (the diameter) is 4 feet, how long a bar of iron
will it take to make the tire ?

Ex. 2. Suppose the crown of your hat is a circular cylinder 7
inches in diameter, how much ribbon will it take for a band, allow-
ing & of a yard for the knot ?

Ex. 3. How many times will the driving-wheel of an engine, which
is 6 feet in diameter, revolve in going from Detroit to Chicago, a
distance of 288 miles, allowing nothing for slipping ?

Ex. 4. A boy’s hoop revolved 200 times in going around a city-
square, a distance of 140 rods. What was the diameter of his hoop ?
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Ex. 5. What is the radius of a circle whose semi-circumference is
7n? In a circle whose radius is 1, what part of the circumference

does 7—; represent ? What part ’—;? What part does 27 represent ?

—_—————

SECTION 11
ABOUT ANGLES.

60. Prob.—To show how angles are generated and measured.

ILn.—An angle is generated by a line revolving about one of its extremities.
Thus, suppose OB to have started from coincidence with OA, and, O remaining

fixed, the line to have revolved to the position OB,
the angle BOA would have been generated. When
the revolving line has passed one-quarter the way
around, as to DO, it has generated a right angle;
when one-half way around, as to FO, two right
angles ; when entirely around, four right angles.

Now, if any circle be described from O as a cen-
tre, the arc tncluded by the sides of any angle having
its vertex at O, is the same part of a quarter of this
circumference as the angleis of a right angle. Hence
the angle is said to be measured by the arc included
by its sides. Thus, the angle COA is measured by

Fie. 36.

the arc ac; ¢. e., it is the same part of a right angle that arc ac is of arc ad.

(8ee Trigonometry, 3-10.)

61. Theorem.—The relative lengths of arcs described with the
same radius can be found in a manner alfogether similar to that

given in (36) for comparing straight lines.

TrL.—If I wish to compare the two arcs ab and ¢d described with the sams

radit, 1 take the dividers, and placing the sharp point on
d (one end of the shorter arc), open them till the other
point is at ¢. I then measure this distance off on ab as
many times as I can,—in this case 2 times, with a remain-
derf5. This remainder, f5, I measure off in the same
way upon de, and find it goes once with a remainder ge.
This remainder, ge, I apply to the arc /b, and find it goes
once with a remainder 2. This last remainder I find is
contained in the last preceding, ge,2 times. Then, count-
ing up the parts, I find that dc is made up of 5 parts each
equal to %b, and ab of 18 such parts. Therefore, ab is 23
times as long as de. [The angle O is therefore 23 times the
angle C.]

b’h_

2
/ 4

o/ 18

e
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Ex. 1. Draw an acute angle and also an obtuse angle, and then
compare them us above.

Ex. 2. Draw a small acute angle and a large acute one, and then
compare them as above.

Ex. 3. Draw a small acute angle, and then draw another angle
3 times as large.

Ex. 4. Draw an acute angle, and also a right angle, and com-
pare them as above.

Sua.—Article (39) shows how to draw a right angle.

Ex. 5. Draw any angle, and then draw another equal to it.

Ex. 6. Show that the angles @, b, and ¢ are respectively %, §, and
.6 of a right angle.*

_—
04
/ . 2
3L /
Fis. 89.
o -
Fio. 38.

Ex. 7. Show that angles @ and 3, Fig. 89, are respectively 14 and
14 times a right angle.

Ex. 8. Draw a regular inscribed hexagon, as in F%g. 31, and then
comparing any one of its angles with a right angle, find that it is
14 times a right angle.

c Ex. 9. Draw an equilateral triangle, as

in Fig. 31, and find that any angle of it
is § of a right angle.

Ex. 10. Show that a right angle is

1
“(; ¢__ measured by } of a circumfezrence.
a

A

SoruTioN.—If CD is perpendicular to AB,

the four angles formed are equal, and each is a

right angle. But,as all of them taken together

D are measured by the whole circumference, one
Fie. 0. of them is measured by 4 of the circumference.

* Of course, absolnte accuracy is not to be expected in such solutions.




ABOUT ANGLES. 27

62. An Inscribed Angle is an angle whose vertex is in
the circumference of a circle, and whose sides are chords, as A,
Fig. 41.

63. Theorem.—An inscribed angle ts measured by one-half the
arc included between its sides.

Irr.—The meaning of this is that an inscribed angle like A, which includes
any particular arc, as cd, is only half as large as an angle would be at the centre,
as ¢Od, whose sides included the same are, ¢d, or an equal arc, Thus, in this
case, drawing the arc ab from A as a centre, with the same radius, Od, as ¢d is
drawn with, I find that ¢b which measures A is { of ¢d which mescsures ¢Od.

Fie. 41. Fre. 42,

Ex. 1. Which of the angles @, b, ¢, d, ¢ is the largest? What is @
measured by? What 6?7 What ¢? Whatd? Whate? Fig. 42.

Ex. 2. Which is the greatest angle, a, b, or ¢, Fig. 43? By what
is @ measured ? By what 4?7 By what ¢? What is the measure
of a right angle ? [See Example 10 in the preceding set.]

~——

Fre. 43. Fre. 4.

Ex. 3. Suppose I take a square card like CEDF, with a hole in one
corner as at C, and sticking two pins firmly in my paper, as at A and
B, place the corner of the card between them, as in Fig. 44, and
then, keeping the sides of the card snug against the ping, wok
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pencil through the hole ¢ and move it around to A and then back
to B; what kind of a line will the pencil trace? Will it make any
difference whether ¢ is a right angle or not? If any difference,
what ?

Ex. 4. By what part of a circumference is an angle of a regular
inscribed hexagon measured? See (55), and Fig. 31. How many
right angles is the angle of the hexagon equal to? What is the
sum of the six angles equal to ? Ans. to last, 8 right angles.

Ex. 5. Show, from the way in which an equilateral triangle is
constructed in Fig. 31, that one of its angles is measured by } of a
circumference, and hence is § of a right angle.

64. Theorem.— When two lines intersect, they form either four
right angles, or two equal acute and two equal obtuse angles.

ILL.—[The pupil can illustrate this for himself by drawing lines and noticing
what angles are equal.] :

Ex. 1. Having a carpenter’s square, an instrument represented by
MON, I wish to test the angle 0 and ascer-
tain whether it is, ag it should be, a right
angle. I draw an indefinite right line AB,
and placing the angle 0 at some point € on
this line with ON extending to the right on
cB, I draw a line along OM. Turning the
square over so that ON shall lie on cA, I
draw another line along OM. Three cases
may occur.—Ilst. Suppose the first line
drawn along OM is CF, and the second CE;
what kind of an angle is 0? 2d. Suppose
the first line drawn is CE and the second CF; what kind of an angle
is0? 3d. Suppose the first and second lines drawn along OM coin-
cide and are €D ; what kind of an angle is 0 ?

Ex. 2. Show that the sum of all the angles formed by drawing
lines on one side of a given line, and to the same point in the line,
is two right angles.

Fie. 45.

65. Prob.—To bisect a given angle.
SoruTioN.—I wish to divide the angle AOB into two equal parts, ¢. e, to
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bisect it. With O, the vertex, as a centre, and any convenient radius, as Oa, I -
strike an arc, as ba, cutting the sides of the angle.

Then from a and b as centres, with the same radius B

in each case, I strike two arcs intersecting as at P.

Drawing a line through P and O, it bisects the P
angle; ¢. ¢, the angle POA = angle BOP. [Let
the pupil try this by cutting out the angle AOB,
and then folding the paper along the line P, or cut-
ting it through in the line OP, and then putting one
angle on the other, and thus see if they do not fit.]

Fie. 46.

Ex. 1. Draw an angle equal to } of a right angle.

Suae.—First draw a right angle and then bisect it

Ex. 2. Draw an angle equal to § of a right angle.

Suve.—Draw a circle. Inscribe an equilateral triangle. [Do it neatly, by
rule, as in (55).] Then bisect any angle of this triangle. This will be § of a
right angle, since the whole angle is . See Ex. 9 (61).

Ex. 3. How does it appear that the angle EDF, Fig. 31,18 § of a
right angle? -

66. Parallel Straight Lines are such as, lying in the same
plane, will not meet how far soever they are produced either way.

ILL.—The sides of this page are parallel lines,
as are also the top and bottom. The lines in
Fy. 47 are parallel.

67. Prob.—To draw a line through Fio. 47.
8 given point and parallel to a given line.

SoLuTioN.—I wish to draw a line through the point O and parallel to the
line AB. [The pupil should first draw some

line, as AB, and mark some point, as 0.] Ic—PFL ° D

take O as a centre, and with a radius * greater

than the shortest distanee to AB, as Oa, draw an o
] =]

indefinite arc aP. Then with « as a centre, and
the same radius, I draw an arc from O to the
line AB at . Taking the distance Ob (the chord) in the dividers, I put the sharp
point on & and strike a small arc intersecting this indefinite arc, as at P. Fi.
nally, drawing a line through O and P, it is the parallel sought.

Fia. 48.

* This meane ** put the sharp point of the dividers on Q and open them till the distance be-
tween the points (the radius) is more than the di~tance from Q to AB.M
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68. Theorem.—Two parallel lines are everywhere the same dis-
tance apart.

IrL.—Let AB and CD be two parallel lines. I will examine them at the two
points O and P. To find how far apart the
A 0 L B lines are at these points I draw the perpen-
diculars OM and PN. [The pupil should not
c ™ N D guess at these, but actually draw them as in-
Fio. 49, structed in (£#4).] Measuring these, I find them

equal.

‘We can understand that this proposition must be true, since the lines could
not approach each other for awhile and then separate more and more without
being crooked ; or, if they kept on approaching each other, they would meet
after awhile, and so not be parallel.

69. Theorem.—Parallel lines make no angle with each other.

ILL.—Let AB be a straight line, and suppose CD another straight line -
passing through the point 0. Now let
D' CD turn around, first into the position

o

D D’C’, then into D”C”, etc., all the time

8 passing through O. It is evident that

& the angle which this line makes with
&r the line AB is all the time growing less,
Ve t.e,a' <a,and a"'<da'. It is also evi-

c dent that this angle will become 0

when the lines become parallel ; for it
becomes less and less all the time, but is always something so long as the lines
are not parallel.

Fia. 50.

70. Theorem.—Parallel lines have the same direction with
each other.

ILL.—Thus, in Fig. 47, the parallel lines all extend to the right and left, ¢. e.,
in the same direction.

Ex. 1. How shall the farmer tell whether the opposite sides of
his farm are parallel ?

Ex. 2. If we wish to cross over from one parallel road to another,
is it of any use to travel farther in the hope that the distance across
will be less ?

Ex. 3. If a straight line intersects two parallel lines, how many
angles are formed? How many angles of the same size? May
they all be of the same size? When? When will they not be all
of the same size?
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SECTION IV,

ABOUT TRIANGLES,

71. A Plane Triangle, or simply A Triangle, is a plane
figure bounded by three straight lines.

72. With respect to their sides, triangles are
distinguished as Scalene, Isosceles, and Equilateral.
A scalene triangle has no two sides equal. An
isosceles triangle has two sides equal. An equi-
lateral triangle has all its sides equal.

73. With respect to their angles, triangles are
distinguished as acufe angled, right angled, and
obtuse angled. An acute angled triangle has three
acute angles. A right angled triangle has one right
angle. An obtuse angled triangle has one obtuse
angle.

Ex. Fig. 51 affords illustrations of all the different kinds of
triangles. Let the pupil point them out until he is perfectly familiar
with the terms. He should also practise drawing the different kinds
of triangles, for the purpose of familiarizing the names applied to
the different kinds.

S

Fie. 5L

74. Theorem.—The sum of the angles of a triangle is two
right angles.

ILL.—Cut out any triangle from a piece of paper.
Then cut off two of the angles, as 1 and 2, and turn
them about and place them by the side of the other 2
angle, a8 in the lower figure. You will then see that
the line OP 13 straight, and that the three angles of
the triangle just make up the two right angles OED O P

and PED.

Ex. 1. If one angle of a triangle is a right
angle, what is the sum of the other two?

Ex. 2. Can a triangle have more than one Fie. 52.
right angle? If two of its angles were right angles, what would
the third angle be?
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Ex. 3. Can a triangle have more than one obtuse angle ?

Sva.——Try and see if you can draw a triangle with two right angles, or two
obtuse angles.

Ex. 4. Construct any triangle, and draw
arcs measuring its angles. Then diaw a circle
with the same radius as the one used to
measure the angles, and lay off upon the cir-

£ cumference the arcs measuring the angles.
7 ¥ The sum of these arcs will always make up
just a semi-circumference. What does this
show ?
bl Ex. 5. If two angles of one triangle are

equal to two angles of another, can the third angles be unequal ?
Why ?

75. Prob.—To make two triangles just alike.

SoLuTIioN.—There are three ways of doing this:

1st Way.—Suppose I have any triangle, as ABC,
and want to make another just like it. I first draw

A :C
2 anarc measuring any one of the angles, as A, of the
given triangle. Then I make an angle D equal to
the angle A, and draw the sides De and Df. Now I
measure DE = AB, and DF=AC. IfI now draw EF,
D the triangle DEF will be just like ABC, so that, were

I to cut them out, I could apply one like a pattern to
the other, and it would just fit.

1% ) 2d Way.—I have a triangle A, and wish- to make
p another just like it. I draw arcs measuring any two
of its angles, as O and P. Then, making a line MN
equal to OP, I make an angle at M equal to O, and
one at N, on the same side of MN, equal to P.
L Now making these two sides Mb and Na long enough
P
M

Fie. 54,

to meet (or, as we say, “ producing them till they
meet”), I have a second triangle, B, just like the first
triangle, A. Were I to cut out the first triangle, it
would fit on the second just like a pattern.

8d Way.—I have a triangle ACB, and want to make
another just like it. I make a line DE equal to some
side of the given triangle,as AB. Then taking AC as
radius, I describe an arc from D as a centre, and in
like manner, with BC as radius and E as a centre,
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describe another arc. Through the intersec-
tions of these arcs, as F, I draw DF and EF. A \~
The triangle DEF is just like ABC. [Try it by

drawing as described, and then cutting out one

triangle, and seeing if you cannot fit it as a

pattern on the other.] ‘< B

Ex. 1. In any triangle, which side is
opposite the greatest angle? Which op- ' _
posite the least angle? Fre. 56. =

Ex. 2. If you have twa triangles with an angle in each equal, but
the sides about this angle longer in one triangle than in the other,
can you make one fit on the other as a pattern ? Cut out two such
triangles and try it.

Ex. 3. Can you make a triangle so that one of its sides shall be
as long as both the others, or longer than both ?

Ex. 4. Can you make a triangle so that one of its sides shall be:
less than the difference between the other two, or equal to the
difference ?

Ex. 5. If you have two triangles with only one side and one angle-
in the one equal to one side and one angle in the other, can you
apply one as a pattern and make it fit on the other? Cut out two.
such triangles and try it.

Ex. 6. If you have two triangles with only two sides of one re--
spectively equal to two sides of the other, can you make one fit as a.
pattern on the other? Try it.

Ex. 7. If you have two triangles with two sides in one equal re--
spectively to two sides in the other, and the included angle in one-
greater than in the other, how is it with the third sides of the-
triangles ?

76. Theorem.—The lines which bisect the angles of a triangle:

meet within the triangle at a common point.

Ira.—Try it, by drawing a triangle, and then bisect-
ing its angles, as taught in (68). You will need to do :
it very neatly, or the lines will not meet. It is a

delcate operation. Try it in various forms of triangles, The. W,
as equilateral, right angled, scalene, obtuse angled, etc.
3
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¥7. Theorem.—The lines drawn from the vertices of a triangle
to the middle of the opposite sides meet in a
y common point within the triangle.

ILL.—Draw a triangle. Bisect each of the sides
as taught in (39). Then join each angle and the
middle of its opposite side with a straight line. If
you do the work well, the three lines will cross
each other at a common point within the triangle.

Fie. 38. _—

8. Theorem.—The perpendiculars which bisect the sides of a
triangle meet at a common point, which may be
within or without the triangle, or in one of its
sides, according to the form of the triangle.

ILL.—Draw an acute angled triangle, and bisect its
sides by perpendiculars. If you do it with accuracy,
they will meet at a common point within the triangle.

Draw an obtuse angled triangle, bisect its sides with
perpendiculars, and they will meet at a common
point without the triangle.

Draw a right angled triangle, and the perpendiculars
will meet in the side opposite the right angle (the
hypotenuse).

Ex. 1. Draw an equilateral triangle, and find
the three points characterized in the last three
e articles. Arethey all in one place, or are they
F1e. 59. in different places?

Ex. 2. Draw a scalene triangle, and find the three points as ahove.
Are they all in the same place, or are they in different places ?

79. Prob.—Toinscribe a circle in a given triangle.

SoruTtIOoN.—I wish to inscribe a circle in
the triangle ABC; that is, a circle to which
the sides of the triangle shall be tangents.
[First draw the triangle.] I bisect the angles
as taught in (65); and then from the point
O, where these intersect, I let fall perpen-
diculars upon the sides, as taught in (£5).
Then from O as a centre, with a radius cqual
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to one of these perpendiculars (they are all equal), I draw a circle, and it is the
circle required.

80. Prob.—To circumscribe a circle about a given triangle.

SoLuTION.—I wish to circumscribe a circle
about the triangle ABC which I have drawn. To
do this, I brsect the sides with perpendiculars, and C
find their common intersection O, as taught in
(78). With O as a centre and a radius equal to
OB, the distance from O to the vertex of any one
of the angles, as these distances are all equal, I
draw a circle. This is the circumscribed circle,
that is, the circle in whose circumference the ver-
tices of the triangle lie. [This is really the same A
as Pros. (58).] Fie. 61.

SECTION V.
ABOUT EQUAL FIGURES.

81. FEqual, in geometry, signifies alike in all respects, 1. e., of the
same shape and the same size.

82. Equivalent figures are such as have the same area, 1. ¢., are
of the same size, irrespective of their form.

Ex. 1. Can a triangle be equal to a circle? Can it be equwalent?
Can a circle be equivalent to a square? Can it be equal to a square ?

Ex. 2. Can a right angled triangle be equal to an equilateral tri-
angle? Cana right angled triangle be equal to an isosceles triangle ?
If either is possible, construct figures illustrating it.

83. P1rob.—To apply one straight line to another.

SoruTION.—[ Applying figures to each other is a very important thing in.
geometry, and may seem a little curious at first;

but it is, in reality, very simple. The pupil must A~ B
become perfectly familiar with it.] We will fist C—————D
apply the line AB to the equal line CD. Take

the line AB,* ‘and placing theend Aupon the g ¢

end C of the line CD, make the line AB take the G
same direction as CD, and put the former upon |
the latter. Now, since the lines are equal, the Fie. 62.

* That is, think about it just as if it were a little rod which you conld pick np snd heade.




36 ELEMENTARY GEOMETRY.

extremity (or the point) B will fall upon D, and the two lines will coincide
throughout their whole extent.

Again, we will apply the line EF to the line CH. Taking the line EF (think
of it as a little rod which you can pick up and handle), put the point E upon
G, and making the line EF take the same direction as GH, put the former upon
the latter. Now, since EF is shorter than GH, the point (extremity) F will fall
somewhere on the line GH, as at |. Therefore the lines do not coincide
throughout their whole extent, and are not equal.

84. Prob.—To apply one plane angls to another.

SoruTIoN.—First we will apply one angle to another equal angle. Thus, to
apply BAC to the equal angle EDF. Take the

B angle BAC (think of it as if it were two little rods

put firmly together at this angle, and so that you

could pick them up and handle them), and placing

A the vertex (point) A upon the vertex (point) D,
make the side AC take the direction DF. As
AC happens to be longer than DF, the extremity

E C will fall beyond F, at some point, a8 O. But we
do not care for this, as the size of an angle does
D F o not depend upon the length of the sides. Now,

while A lies on D, and the line AC on DF, let the
H line AB be conceived as lying in the plane of the
paper also (3. ¢, on it). Since the angle BAC is
equal to EDF, the line AB will take the direction

G DE, and will fall on it, though the point B will
I fall somewhere beyond E, as at N, as AB

L chances to be longer than DE. The two angles

therefore coincide, and are equal. [Notice care-

R fully just what is meant by saying that the angles

are equal. We do not mean that the sides are
of the same length, but that the opening between
them is the same, ¢.e¢., that one is just as sharp
a corner as the other.]

Queries—If BAC were greater than EDF, and
we should begin by putting A upon D, and make AC fall upon DF, where would
AB fall, without the angle EDF or within it? If BAC were less than EDF, and
we proceed as before, placing the vertex A on D, and AC on DF, would AB fall
without EDF or within ijt ?

Again, let us attempt to apply the angle HCI to LKM. Placing the vertex G
on the vertex K, making the side Gl take the direction KM, and then bringing
GH into the plane of the paper, the side GH will fall within the angle LKM (as
in the line KR), since the angle HGI is less than LKM. The angles, therefore,
do not coincide.

M
Fiu. 63.
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85. Prob.— When two triangles have two sides and the sincluded
angle of one equal to {wo sides and the included angle of the other, to
apply one triangle o the other.

SoLuTION.—In the two triangles ABC and DEF, let the angle A be equal to
the angle D, the side AB = the side DE, and AC = DF. We
will apply the triangle ABC* to DEF. Take the triangle B
ABC and place the vertex A upon the vertex D, making the
side AC take the direction DF. Since AC = DF, the ex-
tremity C will then fall on F.+ Now bring the triangle ABC A
into the plane of DEF, keeping AC in DF, and the line AB C
will take the direction DE, since the angle A = the angle D. E
Again, as AB = DE, the extremity B will fall upon E. Thus
we have placed ABC upon DEF, so that A falls upon D,

C upon F, and B upon E, and find that they exactly D
coincide. _ P F
16. 64.

Ex. 1. Suppose you attempt to apply ABC in the last figure to
DEF by placing B on D, and letting BC fall upon oOF. Where will ¢
fall? Measure it and find out. Which side will then fall nearly or
quite on DE? Will it fall exactly on it? On which side will it fall ?
Can you make the triangles coincide (fit) in this way?

Ex. 2. Can you make the triangles in the last figure coincide by
placing C upon D, and letting CA fall upon DF? Where will A fall ?
What line will fall on or near pe? Will it fall without DE, or
within ?

Ex. 3. Construct two isosceles triangles,} as ACB and DEF, in
which AC =CB = DE =EF. Can you ap- c €

ply DEF to ABC by putting D upon A?

Describe the process. Can you put D /\ /\
upon A and DE upon AB, and make the

triangles coincide? Can you make the A B D F
triangles coincide by putting F upon A? Fia. &,

If 80, describe the process. Can you make them coincide by putting

Eupon A? If not, point out the difficulties.

* Think of ABC as made of little rods, so that you can pick it up and place it upon DEF
in the manner described.

+ It will make it clearer if the pupll thinks of ABC, at this stage of the operation, as
having the side AC on DF, but the angle B not down on the paper ; just as if he were to cut
ont ABC, and set the edge AC on the line DF, and afterward dring the triangle ABC down
on to DEF, keeping the edge AC on the line DF.

$ The teacher must insist upon the figures beilng drawn, and that accurately, according to
rule.
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C Ex. 4. Constrict two equal trapeziums,*
a8 ABCD and EFGH, and describe the process
of applying one to the other.

SoLtTioN.—I will apply EFGH to ABCD. As
the angle E is equal to the angle B, I will begin by
putting the vertex E on B, and making EH fall upon

G BC. Since EH=BC, H will fall on C. Now, as
F angle H = angle C, HC will take the direction (fall
on) CD; and since HG = CD, G will fall on D.
Again, as G =D, GF will take the direction DA;
and since CF = DA, F will fall on A. Finally, as
F = A, FE will take the direction AB; and since
FE =AB, E will fall on B, as it ought, since I started by conceiving E as
placed on B.

E H
Fie. 66.

Ex. 5. Describe the application of ABCD in the last figure to EFCH,
by beginning with € upon H.

Ex. 6. Having two equal equilateral triangles, can you apply one
to the other by beginning indifferently with any one angle of one
upon any one angle of the other? Draw two such triangles, and go
through with the details of the application.

86. Prob.—Given two triangles with two angles and the included
stde of the one respectively equal to two angles and the included side
of the other, to apply one triangle to the other.

c SoLuTIoN.—[The pupil should first draw any triangle, as

ABC. Then make a line DF equal to AB, and at the ex-

tremities D and F make angles, as D and F, respectively

equal to A and B. This is preliminary.] Having the two

A triangles ABC and DEF, in which A = D, B = F, and AB = DF,
g B Ipropose to apply one to the other. I will apply ABC to

DEF. Taking ABC, I place A upon D, and make AB take
the direction and fall upon DF. Since AB = DF, B will fall
upon F. Now keeping the line AB in DF, I conceive the

F triangle ABC to come into the plane of DEF. Since A=D,
the side AC will take the direction DE, and the extremity C
of AC will fall somewhere in the line DE,or in DE produced.
Also, since B=F, the line BC will take the direction FE, and the extremity C
of BC will fall somewhere in FE or FE produced. Finally, as C falls in DE and

Fia. 67.

* The teacher must insist upon the figures being drawn, and that accurately, according to
vale,
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FE both, it must be at E, their intersection. Thus I find that the triangle ABC,
when applied to DEF, coincides with it throughout..

Ex. 1. Givén the two triangles DEF and ABC, in which DE=AB,

D= A, but E>B; show how an attempt
to apply one to the other fails. :
SoLuTioN.—8ince angle D = angle A* I ap-
ply the vertex D to the vertex A, and make DE
take the direction AB. As DE = AB, E will fall E
D
C
AA

on B, and the sides DE and AB will coincide.
Again, since D = A, the side DF will take the
direction AC when the planes of the triangles
coincide ; and the extremity F will fall in AC,
or in AC produced (really in AC produced, in
this case). Finally, since E> B, EF will fall to

the right of BC, and the application fails. Fla. 68.
Ex. 2. Construct two trapeziums with their respective sides equal,
as AC = HE, AB = HG, BD = CF, and CD = EF, b
but with their angles unequal; and show how C
an attempt to apply one to the other fails, \
Ex. 3. If the sides of two trapeziums, asin A : \g
the last figure, are equal, and two of the ' F

angles including a side in one are respectively

equal to the corresponding angles in the other,

as A= H, and B =G, can one be applied to the g e
other? If so, give the details of the process. F1e. 69.

SECTION VI
ABOUT SIMILAR FIGURES, ESPECIALLY TRIANGLES.

87. Similar Figures are such as are shaped alike—i. e, have

the same form.
A more scientific definition is, Similar Figures are such as have

their angles respectively equal, and their homologous (correspond-
ing) sides proportional.

* Be careful to distingnish between the vertex, which is a point, and the angle, which is the
gpening between the lines.
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88. Homologous, or Corresponding Stdes of similar fignres,
are those which are included between equal angles in the respective
figures.

IN SiMiLArR TRIANGLES, THE HOoMOLOGOUS SIDES ARE THOSE
OPPOSITE THE EQUAL ANGLES.

Irn.—The triangles ABC and DEF are similar, for they are of the same
shape. But it is easy to see that
ABC is not similar to IHK or
MON. The pupil should notice
that A=D, C=F, and B=E.
Also, side ¢ is 1} times , side fis
1} times ¢, and side d is 1§ times
a; 8o that f:¢ :: e:5, and
f:e::d:a, and d:a ::¢:b.
Now there are no such relations
existing between the parts of
ABC and IHK. The angles B
and K are nearly equal, but A is
much larger than H, and C is
smaller than I. So these triangles are not mutually equiangular, . ¢., each angle
in one has not an equal angle in the other. Again, as to their sides, IH is a
little less than AC, but HK is greater than AB. These two triangles are, there-
fore, not similar.

In the similar triangles ABC and DEF, b is homologous with ¢, since they are
opposite the equal angles B and E. For a like reason a is homologous with d,
and ¢ with f. It may also be observed, that the shortest sides in two similar
triangles are homologous with each other ; the longest sides are also homolo-
gous with each other, and the sides intermediate in length are homologous
with each other.

Ex. 1. Can a scalene triangle be similar to an isosceles triangle?
Can an obtuse angled triangle be similar to a right angled triangle ?

EX. 2. Are all squares similar figures ?

Sue.—First, are the angles equal? Second, is any one side of one square to
some side of another square as a second side of the first is to a second side of the
second, etc. ?

Ex. 3. A farmer has two fields, each of which has 4 gides and 4
right angles. The first field is 20 rods by 50, and the other 40 by
80. Are they similar?

Sua.— Are they mutually equiangular? Then are the lengths in the same
ratio as the widths? If they are not similar, how long would the second have
to be in order to make them similar? Draw two such figures, and see if they
look alike in shape.
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89. Prob.—To find a fourth proportional to three given h’m.‘

SoLuTION.—I have the three given lines A
A, B, and C, and wish to find a fourth line
B— —
such that

C— X
A shall be to B as C is to the fourth line, i. e.,
A : B:: C: fourth line.

To do this, I draw two indefinite lines OX
and OY, from a common point O. On one
of these, as OX, I lay off Oz = A, and O¢ =
8. Then on the other 1 make O = C, and
draw ab. Finally, drawing a parallel to ab Y
through the point ¢ (67), I have Od as the line P —
sought. ‘Thus, calling Od, D, the proportion is Fia. 7.

Og : Oc :: Ob : Od,or
A :B:: C: D

N.B.—The order in which the lines are taken, and the way of drawing the lines
ab and cd, are essential. The following directions will insure correctness : Lay
off the FIRST and SECOND on the SAME LINE, as on OX; and the THIRD on the
OTHER LINE, as on OY. Then join the extremities of the FIRST and THIRD, and
draw the parallel through the extremity of the SECOND.

Ex. 1. Show that if the order of the praportionals in Fig. 71 is
B: A:: C: fourth line, the fourth
proportional is E, Fig. 71. ';"

Ex. 2. Show that a fourth propor- C-
tional to A, B, and C is D. Also, that
a fourth proportional to C, A, and B
is E. Show that, if the order be
A:C :: B : fourth line, D is still the
fourth proportional. Show that Fia. 7.
B: C:: A: 2C, nearly.

— ey

Ex. 3. Solve the proportion 3:8:: 5 : 2, and find = geometrically.

S8ve.—Using the scale of 100ths of a
foot, the figure is that in the margin. OD
is the fourth proportional, or z = OD,
which is found by measurement to be 18},
as it is by arithmetic.

Fre. .
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90. Prob.—To draw a triangle similar to a given triangle, and
having a given side.

SoLUTION.—18t Method.—I have a triangle ACB, and want to make another
similar to it, but having the side homologous to BC equal to a. I draw an
indefinite line, and on it take EF, equal to a. Then at F I make an angle equal

to C, and make the side indefinite. Now I find
C & fourth proportional to BC, EF, and AC. Having
found this, as in the last article, I lay it off from
F,as FD. Drawing DE, I have DEF, the triangle
required.

A I can readily satisfy myself that DEF is simi-
8 lar to ABC, for besides the fact that it looks as if
. it were of the same shape, by measuring the other
two angles, I find that E = B,and D = A. More-
F over, I know that BC, EF, AC, and DF are pro-
portional, because I made them so. And, by
finding a fourth proportional to BC, EF, and AB,
I find it exactly equal to DE. In like manner
D constructing a fourth proportional to AC, DF, and
E AB, I find it to be DE. 8o that the two triangles
Fle. 1. are mutually equiangular, and have their homolo-
gous sides (those opposite the equal angles) pro-

portional. Hence, the triangles are similar.

2d Method.—But an easier way to construct DEF is to make the angle F =
C as before, and then make E = B, and produce the sides till they meet in D.
The triangles will then be similar, and the proportionality of the sides can be
tested.

Ex. 1. Given a triangle whose sides are 7, 11, and 15, to construct
a similar triangle having the side corresponding to the one which is
11 in the given triangle, 8.

Ex. 2. Construct two triangles with equal angles, and then com-
pare the sides, and see whether
you can make two triangles whose

o angles shall be respectively equal,
and their sides not be propor-
tional.

Sue.—Having the triangle ABC, make
DEF equiangular with it, and then

E compare the homologous sides. In the
figure D is made equal to C, and F to
/ " A; whence E = B. DE and BC are
D

Fie. T. homologous sides, because opposite the
equal angles F and A. DF is homolo-
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gous with AC, because it is opposite angle E, which equals B. For a simi-
lar reason EF is homologous with AB. Now, taking two sides of ABC, as BC
and AB, and a side of DEF homologous with one of them, as DE, and finding a
fourth proportional Oc, it will be found exactly equal to EF; so that

BC : DE :: AB : EF (= Oo).

Ex. 3. Make two triangles, two of whose angles shall be, one §
and the other } of a right angle; but make the side included between
these angles twice as great in the second triangle as in the first.
What will be the ratio of the side opposite the angle § in the first
triangle to the homologous side in the second? What the relation
of the sides opposite the angles 1 ?

Ex. 4. If you make one triangle whose sides are 5, 8, and 3; and
a second whose sides are 15, 24, and 9, will they be mutually equi-
angular? Which angles are the equal ones ? Which are the homol-
ogous sides?

EX. 5. There are three pairs of similar ¢
triangles in F%g. 76. Can you point them
out? Also point out their homologous
parts. Are all the triangles which you -
can make out from the figure similar to A
each other ? Fie. 78.

D B

Ex. 6. Wishing to know the height EC of a house, I set up a
stake DB 5 feet long; and putting my
eye close to the ground, I moved back
from the stake to A, so that the top of
the stake and the top of the house were
just in range (in a line). Then by meas-
uring I found AB = 10 feet, and Ac = 80
feet. What was the height of the house ?

Ex. 7. If you take three sticks of different lengths and put them
together by joining their ends two and two, so as to represent a
triangle ; can you, by putting together the same sticks in a different

" order, make a triangle of different form from the first? Will the
angles opposite the same sticks always be the same ?

Ex. 8. If you take more than three sticks (say 4), and make of
them the boundary of a figure, by putting their ends together two
and two, can you put them together so as to make another figure of
different form ? Can you make figures having different angles ?

Ex. 9. If you take three sticks, A 3 inches long, B 5 inches,
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and C 6 inches; and also three other sticks, D 9 inches long, E 15
inches, and F 18 inches ;* can you place them together go as to make
dissimilar triangles? Will the corresponding angles of the two tri-
angles be equal however you may arrange the sticks? If the sides
of two triangles are proportional, will their angles be equal and the
triangles similar?

Ex. 10. If you take four sticks, A 3 inches long, B 5 inches, C 6
inches, and K 4 inches; and also four other sticks, D 9 inches long,
E 15 inches, F 18 inches, and L 12 inches;* can you place them to-
gether so as to make four-sided figures which shall be dissimilar
(7. e., not of the same shape)? Will the corresponding angles of the
two figures be necessarily equal? If the sides of a four-sided figure
are proportional, does it follow that the corresponding angles are
equal, and the figures similar ?

Ex. 11. Why do the braces in the frame

- of a building stiffen it? Is a four-sided

% N figure stiff? 4. 6., are its angles incapable
of change while its sides remain of the

same length ? Can the angles of a triangle

P ) be changed while the sides remain un- -
Fie. 8. changed ?

SECTION VII.
ABOUT AREAS.
91. A Quadrilateral is a plane surface inclosed by four
right lines.

92, There are three Classes of quadrilaterals, viz., Trapeziums,
Trapezoids, and Parallelograms.

93. A Trapezium is a quadrilateral which has no two of its
sides parallel to each other.

94. A Traperoid is a quadrilateral which has but two of its
sides parallel to each other.

* Notice that the sides are proportional, . e.. in the same ratio taken two and two.



ABOUT AREAS, 45

95. A Parallelogram is a quadrilateral which has its oppo-
site sides parallel.

96. A Rectangle is a parallelogram whose angles are right
angles.

97. A Square is an equilateral rectangle.*

98. A Rhombus is a parallelogram whose angles are not right
angles, and all of whose sides are equal.

99. A Rhomboid is a parallelogram whose angles are not
right angles, and two of whose sides are greater than the other two.

ILL.—The figures in the
margin are all quadrilat-

erals. A is a trapezium.

(Why?) Bis a trapezoid. A B \
(Why?) C,D,E,and F are ’ :
parallelograms. (Why ?)
D and E are rectangles,
although D is the form
usually referred to by the
term rectangle. 8o C is
the form usually referred
to when a parallelogram is
spoken of, without saying
what kind of a parallel-
ogram. C is also a rhom-
boid. (Why?) Eisasquare.
(Why? F is a rhombus.
(Why ?) This page is a
rectangle; so also are the
common panes of glass.

100. A Diagonal is a line joining two angles of a figure, not
adjacent.

Iur.—In common language, a diagonal is a line ruﬁning_“ﬁ’om corner to
corner.”

Ex. 1. To construct a square, having given a side; or, in other
words, to construct a square on a given line.

* The pupil shonid be able to give this and all similar definitions a¢ length. Thus, A Square
is a surface inclosed by four equal right lines making right angles with each other.
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1st Method.—Let A be the given side. Draw
P the indefinite line OX, and lay off OM = A. At
N M erect a perpendicular MY, as taught in (44).
On this take MN = A. From N and O as centres,
with a radius equal to A, describe arcs intersect-

A ing, as at P. Draw NP and PO,

2d Method.—Let Q be the given side. Con-
struct equal angles at the extremities of @, and
X M o produce the sides till they meet, and one of
them till it will meet another side of the square

<

proposed. With S as a centre, and ST or SR as

radius, describe a semicircle. Draw RV, and it

\V< forms a right angle at R. The construction can
S now be ﬁnishec‘l as before.

\ Ex. 2. Construct a rhombus whose side

Q T is 2 inches, and one of whose acute angles

is § of a right angle.
Fia. 80. Ex. 3. Construct a rectangle whose ad-
jacent sides are 3 and 5.*
Ex. 4. Construct a rhomboid whose adjacent sides are 3 and 7%,
and their included angle } a right angle.
Ex. 5. How many diagonals has a triangle? How many has a

quadrilateral ? How many has a figure with five sides (a pentagon) ?
Of six? Of eight?

101. The Area of a surface is the number of times it contains
some other surface taken as a unit of measure; or it is the ratio of
one surface to another assumed as a standard of measure.

102. The Unit of Area usually assumed is a square, a side of
which is some linear unit: thus, a square tnch, a square foot, a
square yard, a square mile, etc. By these terms is meant a square 1
inch on a side, one foot on a side, one yard on a side, etec.

The acre is an exception to the general rule of assuming the
square on some linear unit as the unit of area, there being no linear
unit in use whose length is the side of a square acre.

IrL.—The area of a board is the number of squares 1 foot on a side which it
would take to cover it. The area of a floor may be spoken of in square yards,
and is the same as the number of square yards of carpeting it would take to
cover it.

* Take any convenient unit, ar ¢ inch, 1 inch.
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103. The Altitude of a parallelogram is the distance between
its opposite sides; of a trapezoid, it is the distance between its parallel
sides; of a triangle, it is the distance from any vertex to the side
opposite or to that side produced.

104. The Bases of a parallelogram or of a trapezoid are the
sides between which the altitude is conceived as taken ; of a triangle,
it is the side to which the altitude is perpendicular.

InL—The dotted lines in B, C, D, and F, Fig. 79, represent altitudes.
‘When the altitude is the distance between two parallels, the figure has two
bases. The altitude of a parallelogram may '
be reckoned between either pair of parallel G
sides, but it is most common to conceive it as
the distance between the two longer sides.
The altitude of a rectangle is the same as
either side to which it is parallel. A triangle ¢ DB
may have three altitudes, and any side of a
triangle may be conceived as its base. In
Fig. 81, AB is conceived as the base in each case, and CD the altitude.

[ ] SR

A B
Fie. 81,

Ex. What side of a triangle must you conceive as the base, in
order that the altitude shall fall upon it, and not upon its pro-
longation? From what angle will the altitude be reckoned in such
acase?

105. Theorem.—The area of a rectangle is the product of its
two adjacent sides; or, what is the same thing, the product of its
altitude and base.

ILL.—Let ABCD represent a rectangle, of which AB is 8 units long, and
AC 5. Now, let us conceive a square a constructed on one of these units.
Using this surface as the unit of area, it is evident
that in the rectangle cABd there will be 8 such.

Hence, the area of this rectangle is 8 (square units). | j i
Now, drawing parallels to the base through the * :
several points of division of the altitude, it is evident -~ d
that the whole rectangle ABCD is made up of a8  S[2 T
many rectangles like ¢ABd as thereareunits in the A7 73 %23 67 B

altitnde—in this case 5. Hence the whole area is § Fia. 82.
times the area of cABd, 7.e., 5 times 8 (square units)
= 40 (square units).

N.B.—The pupil should be careful lo observe that the language *‘product of
base inlo aliitude,” 18 only a convensent form of abbrevialed empression. W i



48 ELEMENTARY GEOMETRY.

Jjust as absurd to talk about multiplying a line by a line, as to talk about multi-
plying dollars by dollars. Thus 8 inches in length can be taken 5 times, and
makes 40 inches in length. But what does 8 inches in length, multiplied by 5
inches #n length mean? Or what is 8 dollars taken 5 dollars times? The multi-
plier must always be an abstract number, and the product be like the multipli-
cand, from the very nature of multiplication. With this the explanation given
above agrees. When we say that the area of ABCD = 8 x 5, we mean 5 times
8 square units, which equals 40 square units.

106. Theorem.—The area of any parallelogram s the same as
the area of a rectangle having the same base and altitude as the paral:
lelogram, and hence is the product of its base and altitude.

ILL.—This truth is easily illustrated by cutting out a parallelogram, as
ABCD. Then, cutting off the triangle DEC,

F B E /C being careful to make DE perpendicular to
; H BC, and placing DC upon AB s0 as to bring
/ the triangle DEC into the position AFB, the
i ; two parts will just make up the rectangle
A Fro. 6. = AFED. Hence we see that the area of ABCD

is the same as the area of AFED, which latter
is a rectangle having the same base AD, and the same altitude ED, as the given

parallelogram.

10%. Theorem.—The area of a triangle is half the product of
128 base and altitude.

ILL—To illustrate this truth, cut out two triangles A and B just alike. By
placing them gogether, a
+ parallelogram can be
AN " formed whose base and
B altitude are the same as
the base and altitude of
Fie. 84. the triangle. The area of
the parallelogram is the product of its base and altitude. Hence the area of
one of the triangles is one-half the product of its base and altitude.
In fact, by cutting one of the triangles, as A, into two triangles, its parts can
be put with B 80 as to make a rectangle having the same base and altitude as
the triangles. [The pupil should do it.]

108. Theorem.—The area of a trapezoid 18 the product of its
altitude into the line joining the middle points of 1ts inclined sides.

TuL.—To illustrate this truth, cut out any trapezoid, as ABCD, and through
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the middle of the inclined sides, as @ and b, cut o D [o]

off the triangles Aam and Bbn, being careful to

cut in lines am and bn perpendicular to the a 4
base. These can be applied as indicated in the

figure, so as to fill out the rectangle omnp. A m B
Hence we see that the area of the trapezoid is Fie. 85. ’

just equal to the product of its altitude into the line joining the middle points
of its inclined sides, as ab.

Ex. 1. How many square yards of plastering in the walls of a
room 20 feet by 30, and 15 feet high, including the ceiling ?
Ans. 233%.
Ex. 2. A salesman is selling a piece of velvet which is worth 88
per yard. The velvet is cut “on the bias,” as the technical phrase
is, 1. e., obliquely, instead of square across. The piece he is selling is
measured along the selvedge in the usual way half a yard. He is
disposed to charge the customer somewhat more than $4. Is he
right ? The customer claims that he is getting but half a yard of
velvet, and so ought to pay but $4. Is he right?
Ans. Both are right,—the salesman in his demand, and the
customer in his statement. How is it ?

Ex. 3. There are two parallel roads one mile apart. A has a farm
which extends along one of the roads half a mile, and the lines run
perpendicularly from one road to the other. B has a farm lying be-
tween the same roads, and half a mile front on each road, but run-
ning obliquely across. Which
has the larger farm ? S D E F

Ex. 4. Of the four triangles
ACB, ADB, AEB, and AFB, Fig.
86, which has the greatest ,|
area, CF being parallel to AB? Fie. 86.

Ex. 5. Which is the largest triangle which
can be inscribed in a semicircle, having the
diameter for its base ? ~

SN

Fie. 87.

Ex. 6. Can you vary the area of a triangle
while the sides remain of the same length?
Can you vary the area of a quadrilateral while the sides remain of the
same length ?

Ex. 7. If you have two lines each 5 inches long, and two each 3
inches long ; into what kind of a parallelogram must you form them
in order to have its area the greatest?

4
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Ex. 8. Rough boards are usually narrower at one end than at the
other, for which reason the lumberman measures their width in the
middle. What is the number of square feet in the following :

12 boards 16 feet long, 10 inches wide (in the mlddle) H
15 boards 11°feet long, 9 inches wide  « ;
8 boards 10 feet long, 13 inches wide  « “« P

What principle is involved in such measurement ?

Ex. 9. What is the area of a triangle whose altitude is 6 feet, and
base 10 feet? Are these elements sufficient to fix the form of the
triangle ?

Ex. 10. If a line be drawn from any angle of a triangle to the
middle of the opposite side, what is the relation of the areas of
the two partial triangles? Why?

THE PYTHAGOREAN PROPOSITION.

109. Theorem.—Ths square described on the hypotenuse of a
right angled triangle is equivalent to the sum of the two squares
described on the other two sides.

IrL.—The meaning of this proposition may be illustrated thus : Let ABC be
a right angled triangle, right angled at C, and the
sides AC and CB be 4 and 3 respectively. Then
measuring AB, it will be found to be 5, and we
observe that 4* + 8? = §5°. This is also seen from
the figure, in which the square on AC contains
4= 16 square units, and that on CB 3°=9; while
A —B that on AB contains 5* = 25, ¢.¢., a3 many as on
both the other sides. We cannot 80 readily tlus-
trate the truth of the proposition when the ratio
i of the sides is any other than that of 8, 4, and 5,
pL- P E but it is equally true in all cases, as will be proved
Fre. 88. in the next part of this book.

Ex. 1. Can you make a right angled triangle whose sides shall be
5,8,and 10?

Sue.—As 10 is the longest side, it will have to be the hypotenuse. Now 5
+ 8% =25 + 64 = 89. But 10® = 100. Hence, 10 is too long for the hypote-
nuse of a right angled triangle whose other sides are 5 and 8.

Ex. 2. Can you make a right angled triangle whose sides shall be
9, 12, and 15?
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Ex. 3. A carpenter has framed the four sills of a building to-
gether, and placed them on the foundation. He then wishes to
adjust them so that the angles shall be
right angles. He places one end of his L3
ten - foot pole ab at a, 6 feet from ¢; and,
holding it in position, orders his attendants
to move the sill AB to the right. How far N
will the end & of the pole be from ¢ when ©C- D
the angle B is a right angle ? Fre. .

Ex. 4. A gate iz to be 10 feet long and 4 feet high. How long
must the brace be to go in as a diagonal and hold the gate in the
form of a rectangle ?

B

Ex. 5. The angles of a room are all right angles, and its dimen-
sions are 20 feet by 30 on the floor, and 15 feet high. What is the
length of the longest diagonal extending from one corner on the
floor to the opposite corner in the ceiling ? :

Ans. A little more than 39 feet.

Ex. 6. The numbers 3, 4, and 5 are much used by artizans as
parts of a right angled triangle. Will any equi-multiples of them
answer the same purpose, as twice them, ¢.¢., 6, 8, and 10; or three
times them, as 9, 12, and 15, etc.?

Ex. 7. In an obtuse angled triangle, is the square of the side oppo-
site the obtuse angle greater or less than the sum of the squares of
the other two sides? How is it with the square of the side opposite
an acute angle?

cl 1% Cn
Sua.—In the right angled triangle ABC, AC* =
CB* + AB". In the obtuse angled triangle C'B is
equal to CB in the right angled triangle. But 7\__(2"
is greater than AC?; hence AC” > BC™ + AB".
By a similar inspection the other case may be B Fie. 9. A

determined.

110. Prob.—T0 find a mean proportional between two lines.
SoLuTION.—I wish to find a mean propor- N

tional between the lines M and N, ¢.¢., a line c
z,such that ™M
M:z :: z:N, whencez®* =M X N, and
z=1 M XN,
A D B

I draw a line AB equal to the sum of M and
N, making DB = M, and AD = N. I draw &

Te. W\,
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semicircumference on AB, and at D erect CD perpendicular to AB. CDis z,
the mean proportional required.

Ex. 1. To construct a square which shall be equal in area to a
given rectangle.

Sue.—Draw any rectangle. Then find a mean proportional between its
adjacent sides as described above. A square constructed on this line will be
equal in area to the rectangle; since, if z is the side of the square, and M and N
are the adjacent sides of the rectangle, 2* = M x N, But 2? is the area of the
square, and M x N is the area of the rectangle.

Ex. 2. To find the square root of 15 by means of the ruler and
compasses.

Suve.—Since 15 =8 x 5,if DB = 3 and AD = 5, Fig. 91,2(CD) = /8 x 5
= 1/ 15. Therefore, making a figure having DB and AD of these lengths,
CD can be measured, and thus the square root of 15 obtained, approximately, in
numbers.

N. B.—In such a case CD represents exactly the required root, although we
may not be able to express the value exactlly in numbers. In this case geometry
does exactly what arithmetic can only do approximately.

Ex. 3. Draw a line which shall represent, exactly, the square root
of 5.

Sue.—Make DB = 1, and AD = 5.

Ex. 4. Draw a rectangle whose adjacent sides are 2 and 3, and
then draw a square of the same area.

111. Theorem.—The areas of similar triangles are to each
other as the squares of their homologous sides.

ILL.—The meaning of this is, that if ABC and DEF
are similar, and any side of ABC is 2 times as great as the
homologous side of DEF (as is the case in the figure, CB
being = 2FE, CA to 2FD and AB to 2DE) the area of
ABC is 4 times the area of DEF. In fact, in a simple
case like this, we can divide ABC into four triangles
exactly equal to DEF, as is done by the dotted lines.

Ex. 1. A and B have triangular pieces of land,
which are similar to each other, and similarly
gituated. But A’s front is to B’s as 5 to 3; how
much more land has A than B?

Fio, 9. ' . Ans. 2} times as much.
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Ex. 2. In order that one triangle may be similar to and 4 times as
great as another, how must any side
of the first compare with the ho-
mologous side of the second ?

Ex. 3. In order that the areasof
two similar triangles may be to
each other as 4 to 9, what must
be the ratio of their homologous
gides ?

112. Theorem.—The homologous sides of similar triangles are
to each other as the square roots of their areas.

This theorem is involved in the theorem that the areas of similar triangles
are to each other as the squares of their homologous sides. It is illustrated in
the preceding examples. ’

Ex. Construct a triangle with one of its sides 2 in length.
Then construct a similar triangle 1} times as large. What must be
the length of the side of the second triangle which is homologous
with the side 2 of the first.

SorLuTIoN.—Let CAB be the given triangle, whose side AB is 2. Since the
second is to be 1} times as great as the first, the ratio of the areas is 2: 3.
Hence, v/2 : /3
::AB (or 2) : 2, A
the side of the re- ¥ B
quired triangle ho- .
mologous with side ¢
2 of the given tri- C
angle. Construct
the square roots of

2 and 8, as ab and @

ac in the figure, 2
and then find a

fourth proportional

to ab, ae, and AB. F

This is found to be
ay. Taking OE =
ay, construct on it a triangle DEF similar to ABC, and it will be 1} times as

large.

Fia. %4.
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THE AREA OF A CIRCLE.

113. Theorem.—The area of a circle whose radius 18 r, is mr,
1.6, 3.1416 times the square of its radius.

ILL.—If we take a circle whose radius is 7 and circumscribe about it a square
ABCD, we observe that the area of this square is 4. Hence we see that the
area of a circle is less than 4 times the square of its radius. Again, drawing two

diameters EF and CH at right angles to each other,

and joining their extremities, we have the inscribed
C square GEHF. The area of this square is equal to

the area of the two triangles GEF and EHF. But
'g area GEF = §CO x EF = {r x 2r = #*; and in like
manner EHF = 7*. Hence area CEHF = 2.
E r o T F We thus see that the area of a circle is more than
two times the square of the radius. The area
é of a circle is therefore somewhere between two
and four times the square of its radius. Just bow

H many times 7* the area is, we do not propose to find
Fie. 95. in this place, but only say that it has been found to

be 8.1416 times 7*. We must also remark ihat this
is not ezact; but it is near enough for practical purposes. In fact, nobody
knows exactly how many times the square of the radius the area of a circle is.

D G

Ex. 1. If you cut from a square the largest possible circle, show
that you cut away a little less than } of the square, or more exactly
.2146 of it.

Ex. 2. What is the area in acres of a circle whose diameter is 3
miles ? Ans. 4523.904.

Ex. 3. A horse is s0 tied to a tree that he can graze on every side
of it to a distance of 100 feet. What is the area in acres over which

he can graze? Ans. A little less than § of an acre.
Ex. 4. What is the area of a circle whose radius is 1? .
[Remember this result.]

Ex. 5. What is the area of a circle whose radius is 2? 3? 4°?
How do these areas compare with the area of a circle whose radius
i81?

114. Theorem.—The areas of circles are to each other as the
squares of their radii.

ILL.—This is readily seen from the last theorem. Thus the area of a circle
whose radius is 5 is 257 ; and of one whose radius is 6, the area is 86z. Now,
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the ratio of these areas 257 : 86z is the same as 25 : 86, i.¢., a8 the squares of
the radii of the two circles.

Ex. 1. In the figure the radius of the outer
circle is twice that of the inner. How do their
areas compare? How do the 4 parts into which
the larger circle is divided compare with each
other?

Ex. 2. The radii of 2 circles are 3 and 5 re-
spectively ; what is the relation of their areas ?

Ans. 9:25; or one is 2} times as large as the
other.

Fie. 96.

Ex. 3. I have a circle whose radius is 5, and wish to make another
whose area is twice as great ; what must be its radius?
Ans. V50, or 7.071 nearly.

Ex. 4. Can we oompare the areas of circles by means of the squares
of their diameters as well as by means of the squares of their radii?
How much greater is the square of the diameter of any circle than
the square of the radius?

Ex. 5. Two 5-inch stovepipes run together into one 7-inch pipe.
Is the capacity of the one pipe equal to that of the two?

Ex. 6. Two men bought grindstones of equal thickness. The
stones cost $4 and $9 respectively. One was 2 feet in diameter and
the other 3. What was the difference in the rates paid ?

—_——e———

SECTION VIIL

OF POLYGONS.

115. A Polygon is a portion of a plane bounded by straight
lines.

The word polygon means many-angled; so that with strict propriety we
might limit the definition to plane figures with five or more sides. This limita-
tion in the use of the word is frequently made.

116. A polygon of three sides is a ¢riangle ; of four, a quadrilat-
eral ; of five, a pentagon ; of six, a hexagon ; of seven, a heptagon ;
of eight, an ocfagon ; of nine, a nonagon ; of ten, a decagon ; of
twelve, a dodecagon.
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117. A Regular Polygon is a polygon whose sides are
equal each to each, and whose angles are equal each to each.

118. The Perimeter of a polygon is the distance around it,
or the sum of the bounding lines.

119. Theorem.—Any polygon may be divided by diagonals
drawn from any angle, into as many triangles as the polygon has
stdes, less two sides.

IrL.—In the figure the polygon has 7 sides.
By drawing the diagonals from C to the other
angles, we divide the polygon into § (7—2)
triangles.

120. Theorem.—The sum of the an-
gles of any polygon is twice as many right

angles as the polygon has angles (or sides),
Fre. 97. less four right angles.

ILL.—Draw a polygon, as ABCDEFG, and the arcs g, b, ¢, d, ¢, f, g, measuring
its angles. With the same radius draw a
circle. Beginning at some point, as O,
lay off OA =a, AB=15,BC =¢,CD = d,
DE =¢,EF =f, and FGC =g. Itisfound
in this case that the sum of these meas-
ures is two circumferences and a half.
Now, one circumference is the measure
of 4 right angles. Hence, 2} circumfer-
ences measure 2% x 4 = 10 right angles.
Thus it appears that the sum of all the
angles of the polygon is 10 right angles.
This agrees with the theorem; for, by
that, the sum should be 2 right angles x 7
— 4 right angles, which is 10 right angles.

.

121. Prob.—To draw a regu-
lar polygon.

Fie. 98. SoLuTION.—Draw a circle, and divide

the circumference into as many equal arcs

as the polygon has sides. The chords of these arcs will constitute the perimeter
of the polygon.



OF POLYGONS. 57

The practical difficulty lies in dividing the circumference as required. The
circumference can be divided into 6 equal arcs by (55). Drawing radii to these
points of division, and bisecting the included angle, a division into 12 equal
parts is effected. These can be again bisected, and the division into 24 equal parts
effected, etc. Again, the circumference can be divided into 4 equal parts by
drawing two diameters at right angles to each other (see Fig. 95). These arcs
can be bisected as indicated above, and the division into 8 equal parts effected.
Bisecting the latter arcs, we have 16 equal parts, etc. There is also a way to
divide the circumference into 10 equal parts, but it is too difficult to be given
here. For all regular polygons except those of 3, 6, 12, 24, etc., and 4, 8, 16, etc.,
sides, the pupil, at this stage of his progress, is expected to effect the division
by trial. :

EXERCISES.

1. By drawing diagonals from any one angle, into how many tri-
angles can a pentagon* be divided ? Show it with a figure. Into
how many an octagon ? A dodecagon? A nonagon? A hexagon?

2. What is the sum of the angles of a hexagon? Determine the
number mentally, and then measure the angles geometrically, as in
the solution of (120), observing that the latter result verifies the
former. In like manner determine the sum of the angles of a pen-
tagon. Of an octagon. Of a decagon. Of a nonagon. Of a tri-
angle. Of a quadrilateral.

3. If the angles of a hexagon are equal each to each—that is, if
‘the hexagon is equiangular—what is the value of any one angle ?
Ans. 1} right angles.
[Nore.—A regular polygon is equiangular.]

4. What is the value of any angle of a regular octagon? Of a
regular pentagon ? Of a regular dodecagon ?
Answer to the last, 1§ right angles.
5. Construct a regular dodecagon.

6. Construct a regular heptagon.

8ua’s.—Observing that as the chord for the Zezagon
is the radius, and hence the chord for the heptagon is
a little less, we can readily find dy trial just how wide
to open the dividers so that they shall step around
the circumference at 7 steps. This is not a very
scientific way of constructing a figure, it is true, but
it is the only way we can get the chord in this case. Fre. 9.

* Polygons are not to be assumed regular unless they are so designated.
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7. Construct a regular octagon.
8ue.—See the general solution (1.21).

X
F
G
X
H C
]
Fia. 100.
Fia. 101

8. Construct a regular nonagon.

SoLuTioN.—First get a quarter of the cir-
cumference by marking the points where two
diameters at right angles to each other would
cut the circumference. AX is an arc of 90°.
Then from A take AY = 60° by using radius as
achord. YXis therefore an arc of 80°. Divide
this into three equal parts dy ¢rial. Measure
YB equal to two-thirds of YX, and AB and BC
are arcs of 40°, and the chords AB and BC are
chords of the regular nonagon.

9. To draw a five-point star.

SovruTiON.—Draw a circle, and dividing the
circnmference into five equal parts, join the
alternate points of division, as in the figure.

10. To circumscribe a square about a circle (56). Also an equi-
lateral triangle, and a regular hexagon.
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([ What?
[ [ What? Sides. Perimeter,
What? Altitude. Base.
- E 4 Scaleng. E § [Acate.
RIANGLES. .g :g Isosceles. .§
S £ | Equilateral, | 8 % | Obtusg
( What?
g Trapeszium.
) Trapezoid.
2 { QUADRILAT- ( Il%hombuz.
; 3 ERALS. homboid.
2] O Parallelo- :
E & - gram. Rectan- With unequal
Eﬁ é | gular. Square.
= E ) Pentagon.
< | O Hexagon.
& Heptagon. Regular. What?
Octagon.
| Nonagon, ete.
g ghat?
> ircumference.
e CIRCLE. Centre.
o Radius, Diameter.
B
9 Ellipse.
8 | Conic SEcTroNs.*  Parabola.
g Hyperbola.
| | & | HieEER PraANE CURVES.*

* These are inserted simply to give completeness. Of course, the atudent is not expected

to know more than their names.



PART IIL

THE FUNDAMENTAL PROPOSITIONS OF ELLEMENT-
ARY GEOMETRY, DEMONSTRATED, ILLUS-
TRATED, AND APPLIED.

CHAPTER L
PLANE GEOMETRY.

SECTION I
OF PERPENDICULAR STRAIGHT LINES.

PROPOSITION L

122. Theorem.—At any point in a straight line, one perpen-

dicular can be erected to the line, and only one, which shall lie on the
same side of the line.

c’ DEM.—Let AB* represent any line, and P be
e any point therein; then, on the same side of
/ AB there can be one and only one perpendic-
/ ular erected at P. For from P draw any ob-
lique line, as PC, forming with AB the two

A

/

4
Yaray angles CPB and CPA. Now, while the ex-
2 B tremity P, of PC, remains at P, conceive the
line PC to revolve so as to increase the less of
Fie. 102. the two angles, as CPB, and decrease the

greater, as CPA. It is evident that for a certain position of CP, as Q’P, these

* In class recitation the papil should go to the blackboard, after havi;zg bad hie proposition

assigned him, and first draw the figure required for the demonstration. Thie should be done
neatly, accurately, with dispatch, and without any aids. The figure being complete, he
stands at the board, pointer in hand, enunciates the proposition, and then gives the demon-
stration as it is in the text, pointing to the several parts of the figure as they are referred to.
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angles will become equal. In this position C’P becomes perpendicular to AB
(26).* Again, if the line C’P revolve from the position in which the angles
are equal, one angle will increase and the other diminish ; hence there is mdy\
one position of the line on this side of AB in which the adjacent angles
are equal. Therefore there can be one and only one perpendicular erected to
AB at P, which shall lie on the same side of AB. Q. E. D.

123, Cor. 1.—On the other side of the line a second perpen-
dicular, and only one, can be drawn from the same point in the line.

124, Cor. 2.—If one straight line meets another so as to make
the angle on one side of it a right angle, the angle on the other side 13
also a right angle, and the first line is perpendicular to the second.

125. Cor. 3.—If two lines intersect so as to make one of the
Jour angles formed a right angle, the other three are right angles, and
the lines are mutually perpendicular to each other.

DEx.—Thus, if CEB is a right angle, CEA, c

being equal to it, is also a right angle. Then,
a8 AEC is a right angle, the adjacent angle
AED is a right angle, since they are equal.
Also, as CEB is a right angle, and BED equal .
to it, BED is a right angle. Hence CD being A E B
perpendicular to AB, AB is perpendicular to
CD, as it meets CD 8o as to make the adjacent
angles AEC and AED, or CEB and BED equalto
each other (£3).

Di
Fie. 103.

PROPOSITION II.

126. Theorem.— When two straight c
lines intersect at right angles, if the por-
tion of the plane of the lines on one side
of either line be conceived as revolved on
that line as an axis wuntil it coincides

with the portion of the plane on the other A E B
side, the parts of the second line will coin-
cide.
DeM.—Let the two lines AB and CD intersect D
at right angles at E; and let the portion of the Fle. 104.

plane of the lines on the side of CD on which
B lies be conceived to revolve on the line CD as an axis,t until it falls in the

* When a preceding principle is referred to, i should be accuralely quoted by the pupil.

4 As if the paper, which may represent the plane of the lines, were folded in the line CD.
It is important that this process be clearly conceived, as it is to be made the besie ol wany
sabeequent demonatrations.
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pertion of the plane on the other side of CD. Then will EB fall in and coincide
with AE.

For, the point E being in CD, does not change position in the revolution;
and, as EB remains perpendicular to CD, it must coincide with EA after the
revolution, or there would be two perpendiculars to CD on the same side and
gom the same point, E, which is impossible (122). Hence EB coincides with

A. Q. E.D.

PROPOSITION III.

12%. Theorem.—From any point without a straight line, one
perpendicular can be let fall upon that line, and only one.

DEM.—Let AB be any line, and P any point without the line; then one per-
pendicular, and only one, can be let fall from P
upon AB.

For, conceive any oblique line, as PC, drawn,
making the angle PCB>PCA. Now, while the
extremity P of this line remains fixed, conceive

L N e the line to revolve so as to make the greater angle
A . ,:‘ ) Er &g PCB decrease, and the less angle PCA increase.
At some position of the revolving line, as PD, the
two angles which it makes with the line AB will
become equal. When these adjacent angles are equal, the line, as PD, is per-
pendicular to AB (26, 43). Moreover, there is only one position of the line in
which these angles are equal ; hence, only one perpendicular can he drawn
from a given point to a given line. Q. E. D.

Fia. 1C5.

PROPOSITION IV.

128. Theorem.—From a point without a straight line, a per-
pendicular 18 the shortest distance to the line.

Dem.—Let AB be any straight line, P any point without it, PD a perpendicu-
lar, and PC any oblique line; then is PD<PC.

P Let the portion of the plane of the lines above

, AB De revolved upon AB as an axis, until it coin-

N cides with the portion below AB. Let P’ be the

point where P falls in the plane below AB. Now

. conceive the upper part of the plane as revolved

~C back to its original position, and draw PP’ and P'C.

A D B Again, revolving the upper portion of the plane

as before until P falls at P’, since the points D and

C remain fixed, the lines PD and P'D will coin-

Vi cide, as also the angles PDC and P’'DC. Hence,

L/ PDC = P'DC, and PD is the perpendicular from

4 P upon AB (26, 43, 125). Moreover, PD = P'D

Fio. 106, and PC = P’'C, since they coincide when applied.

Finally, PP’ being a straight line, is shorter than
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PCP’, which is a broken line, since a straight line is the shortest distance be-
tween two points. Hence PD, the half of PP/, is less than PC, the half of the
broken line PCP’. q. E. D.

PROPOSITION V.

129. Theorem.—If a perpendicular be erected at the middle
point of a straight line,

1st. Any point in the perpendicular is equally distant from the
extremities of the line.

2d. Any point without the perpendicular i3 nearer the extremity of
the line on 1t3 own side of the perpendicular.

DeM.—1st. Let PD be a perpendicular to AB at its middle point D. Then,
O being any point in the perpendicular, OA.= OB.

For, revolve the figure OBD upon OD as an axis P ,
until it falls in the plane on the other side of PD. Y
Since ODB and ODA are right angles, DB will fall 0

in DA (126); and, since DB == DA, B will fall at A.
Hence, OA and OB coincide, and OA = OB.
2d. O’ being any point without the perpendicular
on the same side as B, 0O'B<0’A. A D B
For, drawing O’A and O’B, let O be the point at
which O’A cuts the perpendicular. Draw OB. Now
0’'B<BO + 00, since O’'B is a straight and O’OB is a broken line. But, as
OA=0B, we may substitute it in the inequality, and have O’'B <OA + 00’, which
sum = O’A.

Fie. 107.

130. Cor—If each of two points in one line 1is equally distant
from the extremities of another line, the former line is perpendicular
to the lalter at its middle point.

DeM.—Every point equally distant from the extremities of a straight line lies
in a perpendicular to that line at its middle point, by the proposition. But,
two points determine the position of a straight line. Hence, two points, each
equally distant from the extremities of a straight line, determine the position
of the perpendicular at the middle point of the line.

EXERCISES.

1. Prob.—To erect a perpendicular to a given line at a given
point in the line.
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SoLuTION.—[The process is given in
(44), and should be repeated here ex-
actly as given there, with the reasons for
the solution, as follows.] A is one point
in the line OA, which is equally distant
X 8 A < Y from B and C, by construction, and O is
Fre. 108, another. Hence OA is perpendicular to
BC at A, by (130).

2. Prob.—To bisect a given line.

m SoruTiON.—[For the process see (39). The
student should first do it as he did then. The
reason why this process bisects AB is as follows.]
Since m is one point equally distant from the ex-
tremities A and B, and #n another, there are two
A 0 B points in mn each equally distant from the ex-
tremities of AB. Hence mn is perpendicular to
AB at-its middle point O, by (130). [The reason
for the process in Fig. 20 is the same. Let the

b student give this method, and show how the cor-
Fia. 109, ollary (1:30) applies.]
(]

3. Prob.—From a point without a
given line, to let fall a perpendicular upon
the line.

4 N A % v  Soruriox.—[Repeat the process as in (45),

and give the reason for it as follows.] O is one
point equally distant from B and C, and D is

X another. Hence a line drawn from O to D is
perpendicular to BC by (130).

Fie. 110.

4. Wishing to erect a line perpendicular to AB at its centre, I
take a cord or chain somewhat

Ao longer than AB, and, fastening
its ends at A and B, take hold of
the middle of the cord or chain

A ,,,,,,,,, B and carry it as far from AB as I
........... L can, first on one side and then on
........ 8 the other, sticking pins at the

most remote points, as at P and
P. These points determine the
perpendicular sought. What is the principle involved ?

Fie. 111,

5. Two boys are skating together on the ice, and both start from



OF OBLIQUE LINES. " 65

the same point at the same time, one skating directly to the shore
and the other obliquely. They both reach the shore at the sdme
time. Which skates the faster? What principle is involved ?

6. Several persons start at different times from the same point in
a straight road that runs along a wood, and each travels directly
away from the road. Will they come out at the same, or at different
points on the opposite side of the wood ? What principle is involved ?
What is the geometrical language for the colloquial phrase « Directly
away from the road” ?

7. If I go from A to B, Fig. 111, by first passing over AP, will 1
gain or lose in distance by going on a little farther in the direction
of AP before I turn and go straight to 8? What principle is in-
volved ? Would I gain or lose by stopping short of P on the line
AP? Why?

SECTION 1I.

OF OBLIQUE STRAIGHT LINES.

PROPOSITION I,

131. Theorem.— When an oblique line meets another straight
line forming two adjacent angles, the sum of these angles 13 two right.
angles. :

DeM.—Let the oblique line CD meet the straight
line AB forming the two adjacent angles CDB and
CDA; then CDB+CDA equals two right angles.

For suppose CD to revolve toward the position of
the perpendicular C’'D ; the angle CDB will increase
at the same rate that CDA diminishes; hence their
sum will remain constant (¢. 6, the same). But,
when CD becomes perpendicular, the sum of the
adjacent angles formed with AB is two right angles by definitions (26, 43).
Therefore CDB + CDA = two right angles. q. E. D. '

Fie. 112.

132. Cor.—The sum of all the consecutive angles formed by any
number of lines meeting a given line on the same side and at a given
point 18 two right angles.

5
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DEM.—Thus ADC” + C'DCY + C"DC” + C"'DC”
+ C”DC’ + C'DC + CDB = ADC’ + C’DB, which
sum is two right angles by the proposition. Or, in
general terms, the angles thus formed can always be
united into two groups, constituting respectively the
two adjacent angles formed by one line meeting
Fie. 113. another.

133. DEr.—Two angles whose sum is two right angles, are
called Supplemental Angles. Hence, the Supplement of an angle is
what remains after subtracting it from two right angles.

PROPOSITION IL

134. Theorem.—When any two straight lines imtersect, the
opposite or vertical angles are equal to each other, and the sum of the
four angles formed is four right angles.

DeM.—Let AB and CE intersect at D; then CDA = the opposite angle BDE,
ADE = the opposite or vertical angle CDB, and ADC + CDB + BDE + EDA =
four right angles. For, since CD meets AB, ADC + CDB = two right angles .

(I31). Also, since BD meets CE, CDB + BDE =

C B tworight angles. Hence ADC + CDB = CDB + BDE;
and, subtracting CDB from both members, there
D remains ADC = BDE. In a similar manner ADE can
g e proved equal to CDB. [The student should give
Fie. 114. the proof]

Again, since ADC + CDB = two right angles, and
BDE + EDA = tworight angles, by adding the corresponding members together,
we have ADC + CDB + BDE + EDA = four right angles.

135, Cor.—The sum of all the consecutive angles formed by any
number of lines meeting at a common point is four right angles.

DeM.—The truth of this corollary is rendered
apparent by drawing a line through the common
vertex, and observing that the sum of all the angles on
each side thereof is two right angles; whence the
sum of all the angles on both sides, which is the
same as the sum of all the consecutive angles formed
Fe. 115. by the line, is four right angles. [Let the student put
letters on the figure,and demonstrate by means of it
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PROPOSITION III.

136. Theorem.—If two supplemental angles are so situated as

to be adjacent to each other, the two sides not common will fall in the
same straight line.

DEM.-—Let the sum of the two angles
BOA and CO’D be two right angles. B
Prolong CO’, forming the angle DO’E. )
Then is DO’E supplemental to CO'D (131, o
133), and hence equal to BOA, which is D
supplemental to CO’D by hypothesis.
Now, if AOB be placed adjacent to CO’D,

the vertex O being at O’, and the side OA A

falling in O’D, OB will fall in O’E, since

BOA = DO’E. Hence, when the angles _____ /.

are o situated, OB becomes the prolonga- € o E
tion of CO’. Q. E. D. Fia. 116.

PROPOSITION 1V.

13%. Theorem.—If from a point without a straight line a per-
pendicular be drawn, oblique lines from the same point cutting the
Hine at equal distances from the foot of the perpendicular are equal to
each other; the angles which they form with the perpendicular are
equal to each other ; and the angles which they form with the line are
equal to each other.

DeM.—Let AB be any straight line, P any point without it, PD a perpen-

dicular, and PC and PE oblique lines cutting
AB at C and E, s0 that DC=DE ; then PC=PE,

P
angle CPD = angle DPE, and angle PCD =
angle PED.
Revolve the figure PDE upon PD as an
axis, until it falls in the plane on the other
side of PD. Bince AB is perpendicular to PD, J
A{t D E B

DB will fall in DA; and, since DE = DC, E
will fall at C. Now, as P remains stationary,
the triangles PDE and PDC coincide. Hence,
PC = PE, angle CPD = angle DPE, and Fre. 117,
angle PCD = angle PED. Q. E. D.

QuEery.—How does the equality of PE and PC follow from (129).

PROPOSITION V.

138. Theorem.—If from a point without a line a perpendicu-
lar be drawn to the line, and also from the same point {woe cdlique
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lines making equal angles with the perpendicular, the oblique lines
are equal to each other, cut the line at equal distances from the fool
of the perpendicular, and make equal angles with it.*

DEM.—PD being a perpendicular to AB, and angle CPD equal to angle
DPE, PC equals PE, CD equals DE, and PCD
P equals PED.

Revolve the figure PDE upon PD as an
axis, till it falls in the plane of PDC. Since
angle EPD = angle CPD, PE will take the
direction PC, and E will fall somewhere in

l the indefinite line PF. But, since PDE and
., PDC are right angles, DE will fall in DA (126)

A{C B EB and E will fall somewhere in the indefinite
line DA. Now, as E falls at the same time in
F1a. 118, PF and DA, it must fall at their intersection

C. Hence, PE coincides with PC, and DE with DC. Therefore PE = PC, DE
= DC, and angle PED == PCD. Q. E. D.

PROPOSITION VI.

139. Theorem.—If from a point without a line a perpendicular

P be let fall on the line, and two oblique
lines be drawn, the oblique line which cuts
off the greater distance from the foot of
the perpendicular i3 the greater.

A F’ v P E B DEeM.—Let AB be any straight line, P any point

3 without it, and PC and PF two oblique lines of

A} which PF cuts off the greater distance from the

“‘p' foot of the perpendicular; that is DF > DC.
Fie. 119. Then is PF > PC.

Revolve the figure FPD upon AB as an axis, until it falls in the plane on the
opposite side of AB. Let P’ be the point at which P falls ; and revolve the figure
FPD back to its original position. Draw P'D, P’F, and P’C producing the
latter till it meets PF in H. Then P’D = PD, P’C = PC, and P'F = PF. Now
the broken line PCP’ < than the broken line PHP’, since the straight line
PC < the broken line PHC. For a like reason the broken line PHP’ < PFP’,
since HP” < HFP’. Hence PCP’ < PFP’, and PC the half of PCP’ < PF the
half of PFP. Q E. D.

Sca.—If the two oblique lines to be compared lie on different sides of the
perpendicular, as PF and PE, DF being greater than DE, lay off DC = DE, and
draw PC. Then since PC = PE, if it is found less than PF, as in the demon-
stration, PE is less than PF.

* This proposition is the converse of the last. The significance of this statement will be
more fully developed farther on (154).
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140. Cor. 1.—From a_given point without a line, there cun not
be two equal oblique lines drawn Yo the line on the same side of a per-
pendicular from the point to the line.

141. Cor. 2—Two equal oblique lines drawn from the same
point in a perpendicular to a given line, cut off equal distances
on that line from the foot of the perpendicular.

Dex.—For, if the distances cut off were unequal, the lines would be unequal.

EXERCISES.

1. Having an angle given, how can you construct its supplement ?
Draw any angle on the blackboard, and then construct its supple-

A\ LAT

Fie. 12.

2. The several angles in the figure are such parts of a rignt angle
as are indicated by the fractions placed in them. If these angles
are added together by bringing the vertices together and causing
the adjacent sides of the angles to coincide, how will MA and GN
lie? Construct seven consecutive angles of these several magni-
tudes. How do the two sides not common lie? Why?

8. If two times A, B, two times D, three times E, three times ¢, three
times G, two times F, in the last figure, are added in order, how will
AM and CN lie with reference to each other? Why ?

Ans. They will coincide.

4. If you place the vertices of any two equal angles together so
that two of the sides shall extend in opposite directions and form
one and the same straight line, the other two sides lying on opposite
sides thereof, how will the latter sides lie? By what principle ?.

5. Upon what principle in this section may the common method
of erecting a perpendicular at the middle of a straight line (39, 44)
be explained ? Upon what the method of letting fall a perpendicular
upon a straight line from a point without (45)?
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6. A and B start at the same time, from the same point in a certain
road ; A travels directly to a point in another road at right angles to
the first, and at ten miles from their intersection, and B travels di-
rectly toward a second point in the second road, which point is seven
miles from the intersection. Both reach their destination at the
same time. Which travels the faster ? . What principle is involved ?

SECTION I1I.
OF PARALLELS.

PROPOSITION L

142. Theorem.—Two straight lines lying in the same plans
and perpendicular to a third line are parallel to each other.

DeM.—Let AB and CD be two straight lines

F lying in the same plane and each perpendicu-
G lar to FE; then are they parallel.

¢ b For if AB and CD are not parallel, they

will meet at some point iI' sufficiently pro-

A = B duced (66). But, if they could meet, we should

E have two straight lines from one point (their

Fie. 121. point of meeting), perpendicular to the same

straight line, which is impossible (Z27). There-

fore, as the lines lie in the same plane and cannot meet how far soever they be

produced, they are parallel. Q. E. D.

143. Cor. 1.—Through the same point one parallel can always
be drawn to a given line, and only one.

DEeM.—Let AB be the given line, and G the given point, there can be one
and only one perpendicular through G to AB (127.) Let this be FE. Now
through G one and only one perpendicular can be drawn to FE. Let this be

CD. Then is CD parallel to AB by the proposition. That there is only one
such parallel, we shall assume as axiomatic.*

144. Cor. 2—If a straight line is perpendicular to ome of two
parallels, it is perpendicular to the other also.

Dem.—If FE is perpendicular to AB it is perpendicular to CD. For, if
through G where FE intersects CD, a perpendicular be drawn to FE, it is par-

* Nous regarderons cette proposition comme E£VIDENTE. P.-F. ComraeNoN. So also
CHAUVENSET.
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allel to AB by the proposition. But, by Cor. 1, there can be but one line !
through G parallel to AB. Hence the perpendicular to FE at G coincides with,
oris, the parallel CD,

PROPOSITION IIL

145. Theorem.—Two straight lines which are parallel to a
third, are parallel to each other.

DEM.—Let AB and CD be each parallel to EF ; H
then are they parallel to each other. £ R F
For draw HI perpendicular to EF ; then will it
be perpendicular to CD because CD is parallel to C L
EF. For a like reason Hl is perpendicular to AB. A B
Hence CD and AB are both perpendicular to HI, M|
and consequently parallel. Q. E. D. Fro. 1 2;
16. .

146. DEFINITIONS.—When two lines are cut by a third line
the angles formed are named as follows:

Eaxterior Angles are those without the two
lines, as 1, 2, 7, and 8.

Interior Angles are those within the two

lines, as 3, 4, 5, and 6. 2
Alternate Eaxterior Angles are those S
without the two lines and on different sides of the 7
gsecant line, but not adjacent, as 2 and 7, 1 and 8.
Alternate Interior Angles are those P 138

within the two lines and on different sides of
the secant line but not adjacent, as 3 and 6, 4 and 5.

Corresponding Angles are one without and one within the
two lines, and on the same side of the secant line but not adjacent,
as 2 and 6,4 and 8,1 and 5, 3 and 7.

PROPOSITION III.

14%7. Theorem.—If two lines are cut by a third line, making
the sum of the interior angles on the same side of the secant line
equal to two right angles, the two lines are parallel.

DeM.—Let AB and CD be met by the line EF, making EGD + FKB = two
right angles; then are AB and CD parallel.
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For, through P, the middle of CK, draw Hi

F perpendicular to AB. 8ince HPG and KPI are

H / vertical angles, they are equal by (134). Also,

D since CKB and CGK are both supplcments of

DCK, the former by hypothesis, and the latter

° by (133),GKB = CCK. Now, conceive the

A /R [ B portion of the figure below P, while remaining

E in the same plane (the plane of the paper) to

revolve upon P (as a pivot) from right to left till

PK falls in PG.* Since PK = PG, K will fall at G. Again, since KPl = GPH

P1 will take the direction PH, and | will fall in PH, or PH produced; and, since

PKI = PCH, Kl will take the direction GH, and | will fall somewhere in GC.

Hence, as | falls in both PH and GC, it must fall at their intersection H; and

KIP coincides with, and is equal to PHG. But KIP ijs a right angle by construc-

tion; hence CHP is a right angle. Therefore, AB and CD are botL perpendic-
ular to HI, and consequently parallel by (I£2). Q. E. D.

(o]

Fie. 14.

148. Cor. 1.—If two lines are cut by a third, making the sum of
the two exterior angles on the same side of the secant line equal to two
right angles, the two lines are parallel.

Dex.—For, if FGD + EKB = two right angles, EKB must = KCD, since FCD
+ KCD = two right angles. Also, if FGD + EKB = two right angles, FGD must
= GKB, since GKB + EKB = tworightangles. Hence, when FGD + EKB = two

right angles, GKB + KGD = two right angles, and the lines are parallel by the
proposition. The same is true for FGC and AKE. [Let the student prove it.]

149. Cor. 2.—If two lines are cut by a third, maoking either
two alternate interior, or either two alternate exterior, or either two
corresponding angles, equal to each other, the lines are parallel.

Dem.—If CCK = CKB, KGD + GKB = two right angles, since CGK + KGD
= tworight angles. Hence the lines are parallel by the proposition. 8o also if
KCD = AKG, or FCD = AKE, or CCF = EKB, or FGD = CKB, or CCF =
AKG, the two lines are parallel. [Let the student show the truth in each case.]

F
HG/\ F

Fie. 125. Fie. 196.
* The accompanying figures will aid the stadent in getting this conception. Fig. 125
represents the position of the lines after the revolution hae gone about half a right angle, and
&ig. 126 when the revolation is almost completed.
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PROPOSITION IV.

150. Theorem.—If two parallel lines are cut by a third lins,
the sum of the interior ungles on the same side of the secant line is
equal to two right angles. '

DEeM.—Let the parallels AB and CD be cut by EF, then is DCK + CKB = twe
right angles.

‘For, if DCK is not the supplement of GKB,
let LM be drawn through G so as to make |
MCK that supplement. Then, by the preced- ..
ing proposition, LM is parallel to AB; and we C— = G
have two parallels to AB through the point G,
which is impossible (Z4£3). Hence, a8 no line
but a parallel can make this interior angle the A E/ K
supplement of the other, the parallel makes it
80. Q E. D.

[Let the student demonstrate this proposi-
tion as the preceding was demonstrated. In this case CD and AB are parallel
by hypothesis, and HI being drawn perpendicular to one is perpendicular to the
other also. When K falls at G, Kl falls on CG, since from a point without a
line only one perpendicular can be drawn to that line.]

151. Cor. 1.—If two parallel lines are cut by a third line, the
sum of either two exterior angles on the same side of the secant line i3
equal to two right angles.

Fie. 121,

DemM.—FCD + EKB = two right angles. For FCD + DCK = tworight angles,
and DCK + GKB = two right angles; whence FGD = GKB. In like manner,
CKB + EKB= two right angles; and DCK + GKB = two right angles; whence
EKB = DCK. Therefore, FGD + EKB = GKB + DCK = two right angles, by
the proposition.

152. Cor. 2—If two p;zrallel lines are cut by a third line, either
two alternate interior, or either two alternate exterior, or either two
rorregponding angles, are equal to each other.

Dem.—If CD and AB are parallel, CCK = GKB. For CCGK + DGK = DCK
+ GKB, the former being equal to two right angles by (Z31), and the latter by
this proposition. Hence, subtracting DCK from both members, CCK = CKB.
(Let the student show in like manner that AKG = KGD, FCD = AKE, CCF =
EKB, FGD = CKB, and CGF = AKG.]

153. Cor. 3.—Of the eight angles formed when one line cuts two
parallels, the four acute angles are equal each to each, and the four
obtuse angles ; or, in case any one angle 18 a right angle, all the
others are right angles.
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154. ScE.—The last two propositions and their corollaries are the convers
of each other; t. ¢, the hypotheses or data and the conclusions or things proved
are exchanged. Thus, in Prop. IIL, the hypothesis is, that The sum of the two
tnterior angles on the same sids of the secant line is equal to two right angles ; and
the conclusion is, that 7%e two lines are parallel. Now, in Prop. IV., the hypoth-
esis is, that The two lines are parallel ; and the conclusion is, that T%he sum of the
two interior angles on the same side of the secant line is two right angles.® [A clear
conception of this scholium will save the student from confounding these prop-
ositions.] P

PROPOSITION V.

155. Theorem.—If two straight lines are cut by a third line
making the sum of the interior angles on one side of the secant line
less than two right angles, the two lines will meet on this side of the
secant line, if sufficiently produced.

DEM.—Let AB and LM be cut by EF making
MCK + FKB < two right angles; then will
AB and LM meet on the side of EF on which
MCK and FKB lie, if sufficiently produced.

For the ungle which a parallel to AB
through G makes with EF is the supplement
of FKB. But by hypothesis MCK is less than
this supplement. Hence the portion GM, of
the 'ne LM, lies within GD, and will meet
KB if sufficiently produced. Q. E. D.

PROPOSITION VL

156. Theorem.—T'wo parallels are everywhere equally distant
from each other.

DeM.—Let E and F be any two points in the line CD, and EG and FH per-
pendiculars measuring the distances between the parallels CD and AB at these
points ; then is EG = FH.

For, let P be the middle point between E and F, and PO a perpendicular at

# The learner may think that, if a proposition is true, its converse is necesearily true ; and
hence, that when a proposition has been proved, its converse may be assumed as also proved.
Now this is by no means always the case. Although in a great variety of mathematical prop-
ositions, it happ that the proposition and its converse are both true, we never assume one
from having proved the other ; and we #hall occasionally find a propoeition whose converve is
not true.
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this point. Revolve the portion of the figure on the right of PO, upon PO as
an axis, until it falls upon the plane of the

paper at the left. Then, since FPO and EPO ¢—8b— P F D
are right angles, PD will fall in PC; and, as
PF =PE, F will fall on E. As F and E are o
right angles, FH will take the direction EG, & G O H B
and H will lie in EG or EG produced. Also, Fra. 129.

as POH and POG are right angles, OB will fall in OA, and H falling at the same
time in EG and OA is at their intersection G. Hence FH coincides with and is
equal to EG. Q E. D.

EXERCISES.

1. Prob.—Through a given point to draw a line parallel to a
given line, by the principle contained tn PROP. 1. of this section.

Suae’s.—Draw a straight line on the blackboard. Designate with a dot some
point without the line. To draw a line through the designated point and par-
allel to the given line, is the problem. Let fall a perpendicular upon the line
from the point. Then through the given point draw a line perpendicular to
this perpendicular. The latter line will be parallel to the given line. (By what
proposition ?)

2. Prob.—Through a given pount to draw a parallel to a given
line by Prop. IIIL

Sue's.—Through the given point draw an oblique line cutting the given line.
Then draw a line through the given point making an angle with the oblique
line equal to the supplement of the angle which is included between the oblique
line and the given line, and on the same side of the former. [Of course the
student will be required to do the work on the blackboard, guessing at nothing.]

3. Prob.—Through a given
point to draw a line parallel to a
given line, upon the principle that
the alternate angles made by a
secant line are equal (152).

N

4. A bevel is an instrument much
used by carpenters, and consists of © R N

a main limb AB, in which a tongue /
/

CD is placed, so0 as to open and shut
like the blade of a knife. This | =T
tongue turns on the pivot 0, which
is a screw, and can be tightened so
a8 to hold the tongue firmly at Fie. 1%

any angle with the limb. The tongue can also be adjusted so as

\

A
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to allow a greater or less portion to extend on a given side, as CB, of
the limb. Now, suppose the tongue fixed in position, as represented in
the figure, and the side m of the limb to be placed against the
straight edge of a board, and slid up and down, while lines are drawn
along the side 7z of the tongue. What will be the relative position of
these lines? TUpon what proposition does their relative position
depend? How can the carpenter adjust the bevel to a right angle
upon the principle in Prop. I, Sec. 1? At what angle is the bevel
get, when, drawing two lines from the same point in the edge of the
board, one with one edge m of the bevel against the edge of the
board, and the other with the other edge m/', these lines are ab right
angles to each other?

5. Are the two walls of a building which are carried up by the
plumb line exactly parallel? Why ?

6. Pasg a circumference through three given points, as in (58),
and show from principles contained in one of the preceding sections,
that 0 is equally distant from A, B, and ¢; and hence that, if a cir-
cumference be drawn from O as a centre with a radius 0A, it will
pass through A, B, and C.

7. Construct two triangles of unequal sizes, but having the sides
of the one respectively parallel to the sides of the other. Are they
shaped alike ?

8. Construct two triangles of unequal sizes, but having the sides
of the one respectively perpendicular to the sides of the other. Are
they shaped alike ? :

9. Construct a parallelogram, two of whose sides are 6 and 10.
Can you construct different-shaped fignres with the same sides ?



RELATIVE POSITIONS OF STRAIGHT LINES.

A

8YNOPSIS

OF THE THREE PRECEDING SECTIONS. 71

SYNOPSIS OF THE THREE PRECEDING SECTIONS,

PERPENDIC- 4
ULARS,

OBLIQUB
Lines.

PaRBRALLELS. <

[ Definition (£:3). .
Prop. I. One and only one ( Cor. 1. 8econd perp.
to a given line at; Cor. 2. If one angle is right.
a given point. Cor. 8. One of 4 angles right.
Prop. 1L Revolved perpendicular.
Prop. ‘III. From a point without a line.
Prop. IV. Shortest distance from a point to a line.
Cor. Two puints equal-
Prop. V. Pointin. Withoat. { ly distant from ex.
tremities of a line,
Prob. To erect a perpendicular.
Proj. To bisect a line.
Prob. To let fall a perpendicular.
Other exercises.

( Cor. Sum of consec. angles
on one side of line.

Def. SBupplement.
Cor. Angles about a

Prop. II. Opp. angles equal. ; point.
Prop. III. Supplemental angles made adjacent.
Prop. 1IV. Ciutting equal distances from foot of perpen-
dicular. :
Prop. V. Making equal angles with perpendicular.
Cor. l.rgl ot two equal

EXERCISES.

\

[ Prop. I Sum of adja-
cent angles.

Propr. V1. Cutting unequal dis- on same side
tances from the foot of perpendic.
of perpendicular. Cor. 2. Two equal ob-

lique lines.
\ EXERCISES.

( Definition (66).
Cor. 1. One parallel

Prop. 1. Two perpendiculars through a point.
to & line. Cor. 2. A perp. to one
of two parallels.
Prop. II. Two lines parallel to a third.
( Exterior, Illglterior. Altzr-
nate xterior, Al-
Def’s of angles formed. )[ ternate Interior, Cor-
. responding.
Cor. 1. Sum of two Ex-
terior angles, two
Prop. III. Sum of Inter. right an§les

angles, two { Cor. 2. Two Alt. Iuter,,
right angles. Alt. Exter, or
Correspond’g an-

7 gles equal.

Cor. 1. Converse of
Cor. 1., Prop. IIL
Cor. 2. Converse of

Cor. 2., Prop. IIL
Prop. IV. Converse of IIL. { (,,."3 " Of the eight

A SECANT TO.

angles.
Sch. Mgeaning of Con-
verse.
Prop. V. Sum of Inter. angles < 2 right angles.

Frop. VI. Everywhere equidistant.

| ExBRCISES,—Probs. 1,2,8. Methods of drawing.
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SECTION 1IV.

OF THE RELATIVE POSITIONS OF STRAIGHT LINES AND
CIRCUMFERENCES.

PROPOSITION L

158. Theorem.—Any diameter divides a circle, and also its
vircumference, into two equal parts.

DeEM.—Let AB Dbe any diameter of the
circle AmBn; then is the figure A%B equal to
AnB.

For revolve AnB upon AB as an axis until it
o falls on the plane of AmB. Then, since every
C puint in AzB is at the same distance from the
centre C, as every point in AmB, the figures
will coincide, and are, consequently, equal.
Hence surface AnB = surface AmB, and arc

AnB = arc AmB. Q. E. D.

PROPOSITION IL

159. Theorem.—A radius which 18 perpendicular to a chord
bisects the chord and also the subtended arc.

DeM.—Let AB be any chord and OE a radius
E perpendicular to it at D; then AD = BD, and

B AE = BE*
" For, drawing the radii OA and OB, revolve
A the semicircle CBE upon the diameter CE until

it falls on CAE. The semicircles will coincide
C (158); and since AB is perpeundicular to OE,
DB will fall in DA. Moreover, as there cannot
be two equal oblique lines from a point to a line
on the same side of & perpendicular, OB and OA
must coincide. Hence BD coincides with AD,
Fie. 132. and BE with AE. Therefore AD = BD, and AE

=BE. QE. D

* To avoid confusing the pupil by a multiplicity of details, the demonstratione in thie sec-
tion are generally limited to the consideration of arcs lees than a semi-circamference. All the
propositions, except Prop. V., are equally trae whatever the arce, and the demonstrations can
easily be applied to cases in which the arcs are greater than semi-circumferences. But this had
better not be done till a review ie taken, for the reason given above.
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160. Cor. 1.—A radius which is perpendicular to a chord bisects
the angle subtended by the arc of that ckord.

Thus OE bisects AOB, since BOE is found to coincide with AOE in the
demonstration above.

161. Cor. 2.—Conversely, 4 radius which bisects an arc is per-
pendicular to the chord of that arc at its middle point.

DeM.—If OE bisects arc AB at E, when semicircle CBE is revolved on CE
till it falls on CAE, EB will coincide with EA; and as D remains fixed and B
falls on A, BD coincides with DA. Hence OE has two points, O and D, each
equidistant from the extremities of AB, and is, consequently, perpendicular to
it at its middle point.

162. Cor. 3.—Algo, conversely, A radius which bisects a chord i3
perpendicular to the chord and bisects the subtended arc.

For it has two points, each equidistant from the extremities of the chord.

163. Cor. 4.—The line OD measures the distance of the chord AB
from the centre; since by the distance from a point to a line is

always meant the shorfest distance. \

PROPOSITION IIL

164. Theorem.—In the same or in equal circles, equal chords
are equally distant from the centre.

DeM.—Let O and O’ F
he two equal circles, and H

chord EF = chord CH; g [/
then are the perpendicu-
lars LO and NO’,which

measure the distances
of the chords from the
centre (163), equal.

For, since FE is per-

dicular to LO and

g-lnm NO’, and LF = NH Fie. 188.
(159), the equal oblique lines FO and HO’ cut off equal distances from the foot
of each perpendicular (Z41). Therefore LO = NO’. Q.E. D.
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lines making equal angles with the perpendicular, the oblique lines
are equal o each other, cut the line at equal distances from the foot
of the perpendicular, and make equal angles with it.*

Deu.—PD being a perpendicular to AB, and angle CPD equal to angle
DPE, PC equals PE, CD equals DE, and PCD
P equals PED.

Revolve the figure PDE upon PD as an
axis, till it falls in the plane of PDC. Since
angle EPD = angle CPD, PE will take the
direction PC, and E will fall somewhere in
the indefinite line PF. But, since PDE and
PDC are right angles, DE will fall in DA (126)

’Zt B E B 4nd € will fall somewhere in the indefinite
line DA. Now, as E falls at the same time in
Fia. 118, PF and DA, it must fall at their intersection

C. Hence, PE coincides with PC, and DE with DC. Therefore PE = PC, DE
= DC, and angle PED == PCD. Q. E. D.

PROPOSITION VI.
139. Theorem.—lf from a point without a line a }mpendwular

P be let fall on the line, and two oblique
lines be drawn, the oblique line which cuts
M off the greater distance from the foot of

& \ the perpendicular is the greater.
A F \ D E B Dem.—Let AB be any straight line, P any point
RN without it, and PC and PF two oblique lines of
which PF cuts off the greater distance from the
Np’ foot of the perpendicular; that is DF > DC.

Fia. 119. Then is PF > PC.

Revolve the figzure FPD upon AB as an axis, until it falls in the plane on the
opposite side of AB. Let P’ be the point at which P falls ; and revolve the figure
FPD back to its original position. Draw P'D, P’F, and P’C producing the
latter till it meets PF in H. Then P'D = PD, P’C = PC, and P'F = PF. Now
the broken line PCP’ < than the broken line PHP’, since the straight line
PC < the broken line PHC. For a like reason the broken line PHP’ < PFP’,
since HP’ < HFP’. Hence PCP’ < PFP’, and PC the half of PCP’ < PF the
half of PFP’. Q E. D.

Sca.—If the two oblique lines to be compared lie on different sides of the
perpendicular, as PF and PE, DF being greater than DE, lay off DC = DE, and
draw PC. Then since PC = PE, if it is found less than PF, as in the demon-
stration, PE is less than PF.

* This proposition is the converss of the last. The significance of this statement will be
more fully developed farther on ( 154).
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140. Cor. 1.—From a_given point without a line, there cun not
be two equal oblique lines drawn to the line on the same side of a per-
pendicular from the point to the line.

141. Cor. 2.—Two equal oblique lines drawn from the sams
point in a perpendicular to a given line, cut off equal distances
on that line from the foot of the perpendicular.

Dex.—For, if the distances cut off were unequal, the lines would be unequal.

EXERCISES.

1. Having an angle given, how can you construct its supplement ?
Drsw any angle on the blackboard, and then construct its supple-

A\ANLAT

Fie. 120.

- 2 The several angles in the figure are such parts of a rignt angle

as are indicated by the fractions placed in them. If these angles
are added together by bringing the vertices together and causing
the adjacent sides of the angles to coincide, how will MA and GN
lie? Construct seven consecutive angles of these several magni-
tudes. How do the two sides not common lie? Why?

8. If two times A, B, two times D, three times E, three times ¢, three
times G, two times F, in the last figure, are added in order, how will
AM and GN lie with reference to each other? Why ?

Ans. They will coincide.

4. If you place the vertices of any two equal angles together so
that two of the sides shall extend in opposite directions and form
one and the same straight line, the other two sides lying on opposite
sides thereof, how will the latter sides lie? By what principle 2.

5. Upon what principle in this section may the common method
of erecting a perpendicular at the middle of a straight line (39, 44)
be explained ? Upon what the method of letting fall a perpendicular
upon a straight line from a point without (45)?
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For, through P, the middle of CK, draw HI

F perpendicular to AB. 8ince HPG and KPI are
H % vertical angles, they are equal by (134). Also,
C D
P

since GKB and CGK are both supplcments of
DCK, the former by hypothesis, and the latter
. by (133),GKB = CCGK. Now, conceive the
A /K I B portion of the figure below P, while remaining
E in the same plane (the plane of the paper),to
revolve upon P (as a pivot) from right to left till
PK falls in PG.* Since PK = PG, K will fall at G. Again, since KPl = GPH
P1 will take the direction PH, and | will fall in PH, or PH produced; and, since
PKI = PCH, Kl will take the direction GH, and | will fall semewhere in GC.
Hence, as | falls in both PH and GC, it must fall at their intersection H; and
KIP coincides with, and is equal to PHG. But KIP is a right angle by construc- -
tion; hence GHP is a right angle. Therefore, AB and CD are botk perpendic-
ular to HI, and consequently parallel by (1£2). Q. E. D.

Fie. 14.

148. Cor. 1.—If two lines are cut by a third, making the sum of
the two exterior angles on the same side of the secant line equal to two
right angles, the two lines are parallel.

Dex.—For, if FGD + EKB = two right angles, EKB must = KGD, since FGD
+ KGD = two right angles. Also, if FGD + EKB = two right angles, FGD must
= CKB, since GKB + EKB = tworightangles. Hence, when FGD + EKB = two
right angles, GKB + KGD = two right angles, and the lines are parallel by the
proposition. The same is true for FGC and AKE. [Let the student prove it.]

149, Cor. 2.—If two lines are cut by a third, making either
two alternate interior, or either two alternate exterior, or either two
corresponding angles, equal to each other, the lines are parallel.

Dem.—If CGK = CKB, KGD + GKB = two right angles, since CGK + KCD
= two right angles. Hence the lines are parallel by the proposition. 8o also if
KGD = AKC, or FGD = AKE, or CCF = EKB, or FGD = CKB, or CGF =
AKC, the two lines are parallel. [Let the student show the truth in each case.]

w o/

(] BD F e
B
P 1 G
1 D
K A
A E

Fie. 125. Fie. 196.
* The accompanying figures will aid the student in getting this conception. Fig. 125
represents the position of the lines after the revolution has gone about half a right angle, and
Fig. 126 when the revolation is almost completed.
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PROPOSITION IV.

150. Theorem.—If two parallel lines are cut by a third line,
the sum of the interior angles on the same side of the secant line is
equal to two right angles. '

DEM.—Let the parallels AB and CD be cut by EF, then is DGK + CKB = twe
right angles.

-For, if DCK is not the supplement of GKB,
let LM be drawn through G so as to make
MCK that supplement. Then, by the preced-
ing proposition, LM is parallel to AB; and we
have two parallels to AB through the point G,
which is impossible (143). Hence, as no line
but a parallel can make this interior angle the
supplement of the other, the parallel makes it
80. Q. E. D.

[Let the student demonstrate this proposi-
tion as the preceding was demonstrated. In this case CD and AB are parallel
by hypothesis, and HIl being drawn perpendicular to one is perpendicular to the
other also. When K falls at G, Ki falls on CG, since from a point without a
line only one perpendicular can be drawn to that line.]

151. Cor. 1.—If two parallel lines are cut by a third line, the
sum of either two exterior angles on the same side of the secant line is
equal to two right angles.

Fie. 127.

DeM.—FCD + EKB = two right angles. For FCD + DCK = tworight angles,
and DCK + GKB = two right angles; whence FGD = GKB. 1In like manner,
CKB + EKB= two right angles; and DCK + GKB = two right angles; whence
EKB = DGK. Therefore, FGD + EKB = GKB 4+ DGK = two right angles, by
the proposition.

152, Cor. 2.—If two p;zrallel lines are cut by a third line, either
two alternate interior, or either two alternate exterior, or either two
rorresponding angles, are equal to each other.

Dem.—If CD and AB are parallel, CGK = GKB. For CCK + DCK = DCK
+ CKB, the former being equal to two right angles by (13 1), and the latter by
this proposition. Hence, subtracting DCK from both members, CGK = GKB.
(Let the student show in like manner that AKG = KGD, FGD = AKE, CGF =
EKB, FCD = GKB, and CCGF = AKG.]

153. CoRr. 3.—Of the eight angles formed when one line cuts two
parallels, the four acute angles are equal each to each, and the four
obtuse angles ; or, in case any one angle i3 a right angle, all the
others are right angles.
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154. BcH.—The last two propositions and their corollaries are the converse
of each other; ¢. e., the hypotheses or data and the conclusions or things proved
are exchanged. Thus, in Prop. IIL, the hypothesis is, that The sum of the two
snterior angles on the same sids of the secant line is equal to two right angles ; and
the conclusion is, that T%e two lines are parallel. Now, in Prop. IV., the hypoth-
esis is, that The two lines are parallel ; and the conclusion is, that The sum of the
two snterior angles on the same side of the secant line 18 two right angles.® [A clear
conception of this scholium will save the student from confounding these prop-
ositions.] P

PROPOSITION V.

155. Theorem.—If two straight lines are cut by a third line
making the sum of the interior angles on one side of the secant line
less than two right angles, the two lines will meet on this side of the
secant line, if sufficiently produced.

Dem.—Let AB and LM be cut by EF making
MCK + FKB < two right angles; then will
AB and LM meet on the side of EF on which
MCK and FKB lie, if sufficiently produced.

For the angle which a parallel to AB
through G makes with EF is the supplement
of FKB. But by hypothesis MCK is less than
this supplement. Hence the portion GM, of
the line LM, lies within GD, and will meet
KB if sufficiently produced. Q. E. D.

PROPOSITION VL

156. Theorem.—T'wo parallels are everywhere equally distant
from each other.

Dem.—Let E and F be any two points in the line CD, and EC and FH per-
pendiculars measuring the distances between the parallels CD and AB at these
points ; then is EG = FH.

For, let P be the middle point between E and F, and PO a perpendicular at

* The learner may think that, if a proposition is true, its converse is necessarily true ; and
hence, that when a proposition has been proved, its converse may be assumed as also proved.
Now this is by no means always the case. Although in a great variety of mathematical prop-
ositions, it happens that the proposition and its converse are both true, we never assume one
from having proved the other ; and we shall occasionally find a proposition whose converve is
not true.
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this point. Revolve the portion of the figure on the right of PO, upon PO as
an axis, until it falls upon the plane of the

paper at the left. Then, since FPO and EP0 ¢——E—P2 —F  p
are right angles, PD will fall in PC; and, as
PF =PE, F willfall on E. As F and E are =
right angles, FH will take the direction EG, A G 0 H =
and H will lie in EG or EG produced. Also, Fie. 129.

a8 POH and POG are right angles, OB will fall in OA, and H falling at the same
time in EG and OA is at their intersection G. Hence FH coincides with and is
equal to EG. Q E. D. :

EXERCISES.

1. Prob.—Through a given point fo draw a line parallel to a
given line, by the principle contained in PRoP. L. of this section.

Svae’s.—Draw a straight line on the blackboard. Designate with a dot some
point without the line. To draw a line through the designated point and par-
allel to the given line, is the problem. Let fall a perpendicular upon the line
from the point. Then through the given point draw a line perpendicular to

this perpendicular. The latter line will be parallel to the given line. (By what
Jproposition ?)

2. Prob.—Through a given pownt to draw a parallel to a given
&ine by Prop. 111

Suae’s.—Through the given point draw an oblique line cutting the given line.
‘Then draw a line through the given point making an angle with the oblique
line equal to the supplement of the angle which is included between the oblique
line and the given line, and on the same side of the former. [Of course the
student will be required to do the work on the blackboard, guessing at nothing.]

3. Prob.’—Through' a given
point to draw a line parallel to a
given line, upon the principle that

the alternate angles made by a
secant line are equal (152). 7 /
4. A bevel is an instrument much
c R

used by carpenters, and consists of
a main limb AB, in which a tongue /
CD is placed, so as to open and shut -~
like the blade of a knife. This /

\
-

tongue turns on the pivot 0, which L.TA"
is a screw, and can be tightened so
a8 to hold the tongue firmly at Fie. 130-

any angle with the limb. The tongue can also be adjusted so as
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to allow a greater or less portion to extend on a given side, as CB, of
the limb. Now, suppose the tongue fixed in position, as represented in
the figure, and the side m of the limb to be placed against the
straight edge of a board, and slid up and down, while lines are drawn
along the side 7 of the tongue. What will be the relative position of
these lines? Upon what proposition does their relative position
depend? How can the carpenter adjust the bevel to a right angle
upon the principle in Prop. I, Sec. 1? At what angle is the bevel
set, when, drawing two lines from the same point in the edge of the
board, one with one edge m of the bevel against the edge of the
board, and the other with the other edge m’, these lines are at right
angles to each other?

5. Are the two walls of a building which are carried up by the
plumb line exactly parallel? Why?

6. Pass a circumference through three given points, as in (§8),
and show from principles contained in one of the preceding sections,
that O is equally distant from A, B, and C; and hence that, if a cir-
cumference be drawn from O as a centre with a radius 0A, it will
pass through A, B, and C.

7. Construct two triangles of unequal sizes, but having the sides
of the one respectively parallel to the sides of the other. Are they
shaped alike ?

8. Construct two triangles of unequal sizes, but having the sides
of the one respectively perpendicular to the sides of the other. Are
they shaped alike ? :

9. Construct a parallelogram, two of whose sides are 6 and 10.
Can you construct different-shaped fignres with the same sides ?



RELATIVE PoSITIONS OF STRAIGHT LINES.

SYNOPSIS OF THE THREE PRECEDING SECTIONS. 7

SYNOPSIS OF THE THREE PRECEDING SECTIONS.

PERPENDIC-
ULARS,

OBLIQUB
Lings

PARALLELS. <

([ Definition (43).
Prop. I. One and only one ( Cor. 1. Second perp.
to a given line at ; Cor. 2. If one angle is right.
a given point. Cor. 8. One of 4 angles right.
Prop. II Revolved perpendicular.
Prop. ‘III. From a point without a line.
Prop. 1V. Shortest distance from a point to a line.
Cor. Two points equal-
Prop. V. Pointin. Without. «3 ly distant from ex.
tremities of a line,
Prob. To erect a perpendicular.
Proj. To bisect a line.
Prob. To let fall a perpendicular.
Other exercises.

. . Cor. Sum of consec. angles
Prop. I. Sum of adja- ‘ on one side of line. &

cent angles. Def. Supplement.
Prop. 1I. Opp. angles equal. i Cor. gol:ﬂ_es about s
Prop. III. Supplemental angles made adjacent.
Prop. IV. Cutting equal distances from toot of perpen-
dicular.
Pror. V. Making equal angles with perpendicular.
Cor. 1. Not two equal

EXERCISES.

Prop. VI. Cutting unequal dis- on same side
tances from the foot of perpendic.
of perpendicular. Cor. 2. Two equal ob-

lique lines.
\ EXERCISES.

( Definition (66).
Cor. 1. One parallel
Prop. I. Two perpendiculars through a point.
to & line. Cor. 2. A perp. to one
of two parallels.
Pror. II. Two lines parallel to a third.

( Exterior, I]gterior. Alter-

nate xterior, Al-

Def’s of angles formed. 1 ternate Interior, Cor-
. responding.

( Cor. 1. Sum of two Ex-

l terior angles, two

Prop. III. Sum of Inter. ri'i;ht angles.

Cor. 2.

Cor. 1. Converse of
Cor. 1., Prop. IIL
Cor. 2. Converse of

Cor. 2., Prop. I11.
Prop. IV. Converse of III. Cor. 8. OF the eight

g angles, two 'wo Alt. Inter.,
= right angles. Alt. Exter, or
z Correspond’g an-
g 1 gles equal.

@

<

aillgles.

Sch. Meaning of Con-
verse.

Prop. V. Sum of Inter. angles < 2 right angles.

Frop. VI. Everywhere equidistaunt.
| ExsRCISES,—Probs. 1,92, 8. Methods of drawing,
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to allow a greater or less portion to extend on a given side, as CB, of
the limb. Now, suppose the tongue fixed in position, as represented in
the figure, and the side m of the limb to be placed against the
straight edge of a board, and slid up and down, while lines are drawn
along the side # of the tongue. What will be the relative position of
these lines? Upon what proposition does their relative position
depend? How can the carpenter adjust the bevel to a right angle
upon the principle in Prop. I, Sec. 1? At what angle is the bevel
set, when, drawing two lines from the same point in the edge of the
board, one with one edge m of the bevel against the edge of the
board, and the other with the other edge m', these lines are at right
angles to each other?

5. Are the two walls of a building which are carried up by the
plumb line exactly parallel? Why?

6. Pass a circumference through three given points, as in (58),
and show from principles contained in one of the preceding sections,
that O is equally distant from A, B, and c; and hence that, if a cir-
cumference be drawn from O as a centre with a radius 0A, it will
pass through A, B, and c.

7. Construct two triangles of unequal sizes, but having the sides
of the one respectively parallel to the sides of the other. Are they
shaped alike ?

8. Construct two triangles of unequal sizes, but having the sides
of the one respectively perpendicular to the sides of the other. Are
they shaped alike ? :

9. Construct a parallelogram, two of whose sides are 6 and 10.
Can you construct different-shaped fignres with the same sides ?
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160. CoRr. 1.—A radius which 18 perpendicular to a chord bisects
the angle subtended by the arc of that chord.

Thus OE bisects AOB, since BOE is found to coincide with AOE in the
demonstration above.

161. Cor. 2.—Conversely, 4 radius which bisects an arc is per-
pendicular to the chord of that arc at its middle point.

DeM.—If OE bisects arc AB at E, when semicircle CBE is revolved on CE
till it falls on CAE, EB will coincide with EA; and as D remains fixed and B
falls on A, BD coincides with DA. Hence OE has two points, O and D, each
equidistant from the extremities of AB, and is, consequently, perpendicular to
it at its middle point.

162. Cor. 3.—Also, conversely, 4 radius which bisects a chord is
perpendicular to the chord and bisects the subtended arc.

For it has two points, each equidistant from the extremities of the chord.

163. Cor. 4—The line OD measures the distance of the chord AB
from the centre; since by the distance from a point to a line is
always meant the shorfest distance. \

PROPOSITION IIL

164. Theorem.—In the same or in equal circles, equal chords
are equally distant from the centre.

DeEM.—Let O and O’ ¢

he two equal circles, and H
chord EF = chord CH; g %
then are the perpendicu-
lars LO and NO’,which £
measure the distances
of the chords from the
centre (163),equal.

For, since FE is per-

dicular to LO and

lée':w NO’, and LF = NH Fra. 133.
(159), the equal oblique lines FO and HO’ cut off equal distances from the foot
of each perpendicular (141). Therefore LO=NO’. q.E. p.
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PROPOSITION IV.

165. Theorem.—In the same or in equal circles, equal arcs have
equal chords; and conversely, equal chords subtend equal arcs.

DeM.—Let O and O’ be
the centres of two equal

B D
mye 7 circles, and arc AmB = arc
/ / CnD; then chord AB =
. C chord CD.

Apply the circle O’ to

the circle O, with O’ at O,

and C at A. Since the cir-

cumferences coincide, all

the points in each bein
Fra. 184. equally distant from the
centre, and since arc AmB = arc CnD by hypothesis, D will fall at B. Hence
AB = CD.

Conversely, if chord AB = chord CD, arc AmB =arc CaD. Draw the per.
pendiculars OL and O’N from the centres to the chords. Conceive the plane
of circle O’ placed upon circle O, so that CD shall fall upon its equal AB, and
O’ be on the same side of AB as O. HSince L and N are the middle points of
the equal chords, they will coincide ; and as LO and NO’ are perpendiculars to
the respective chords, and equal (164), O’ will fall at O. As the circles are
equal, the circumferences will coincide, and consequently the arc AmB coin-
cides with CnD.

PROPOSITION Y.

166. Theorem.—In the same or in equal circles, the less of
two arcs has the shorter chord ; and, conversely, the shorter chord
subtends the less arc.

DeM.—Let O and O’ be the centres of two equal circles, and arc AmB be less

than arc CnD; then is
chord AB < chord CD.

B o D . .
Drawing the diameters
( AL and CM, place circle
\ O’ upon circle O, with
| CM upon AL. Take arc
A 0 o M AD’ = arc CnD and

draw AD/, 0B, and OD’.

AD' = CD by (165).

Now AB < AN + NB.

Also OD'< ND’ + NO;

Fie. 185. or,as OD’ = 0B, OB <

ND’ + NO. Subtracting NO from both members, OB — NO (or NB) < ND’.

Hence, we may substitute ND’ for NB in the inequality AB < AN + NB and
bave AB < AN + ND' or AD’, which equals CD.
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160. CoRr. 1.—A radius which is perpendicular to a chord bisects
the angle subtended by the arc of that chord.

Thus OE bisects AOB, since BOE is found to coincide with AOE in the
demonstration above.

161. Cor. 2.—Conversely, A radius which bisects an arc is per-
pendicular to the chord of that arc at its middle point.

Dem.—If OE bisects arc AB at E, when semicircle CBE is revolved on CE
till it falls on CAE, EB will coincide with EA; and as D remains fixed and B
falls on A, BD coincides with DA. Hence OE has two points, O and D, each
equidistant from the extremities of AB, and is, consequently, perpendicular to
it at its middle point.

162. Cor. 3.—Algo, conversely, A radius which bisects a chord is
perpendicular to the chord and bisects the subtended are.

For it has two points, each equidistant from the extremities of the chord.

163. Cor. 4 —The line OD measures the distance of the chord AB
from the centre; since by the distance from a point to & line is
always meant the shortest distance. .

PROPOSITION IIL

164. Theorem.—In the same or in equal circles, equal chords
are equally distant from the centre.

DeMm.—Let O and O’ F

he two equal circles, and
chord EF = chord GH; 9 [/
then are the perpendicu-

lars LO and NO’,which §
measure the distances
of the chords from the
centre (163), equal.

For, since FE is per-
pendicular to LO and
CH to NO’, and LF = NH
(159), the equal oblique lines FO and HO’ cut off equal distances from the foot
of each perpendicular (1£1). Therefore LO=NO’. q.E.D.

Fre. 188.
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PROPOSITION VIIL.

170. Theorem.—A straight line which intersects a circumfer-
ence in one point intersects it also in a second point.

DrM.—Tet LM intersect the circumference at A;
then does it intersect at some other point, as B.

For, since LM intersects the circumference, it
passes within it, and has points nearerto O than A.
The radius OA is, therefore, an oblique line. Now
two equal oblique lines can be drawn from O to the
straight line LM. But all points in the plane at the
distance OA from O, are in the circumference. Hence
there is a second point, as B, common to LM and the
circumference. Q. E. D.

Fia. 137,

17 1. Cor.—Any line which s oblique to a radius at its extremity,
18 a secant line.

PROPOSITION IX.

172. Theorem.—A straight line which is perpendicular to a
radius at its extremity is tangent to the circumference.

DeM.—The line touches the circumference because the extremity of the
radius is in the circumference. Moreover, it does not intersect the circum-
ference, since, if it did, it would have points nearer the centre than the extremity
of the radius; but these it cannot have, as the perpendicular is the shortest
distance from a point to a line. Hence, as a line which is perpendicular to a
radius at its extremity touches the circumference but does not intersect it, it is
a tangent (53). Q. E. D.

173. Cor.—Conversely, 4 fangent to a circumference is perpen-:
dicular to a radius at the point of contact.

For, as a tangent to a circumference does not pass within, the point of contact
is the nearest point to the centre, and hence is the foot of a perpendicular from
the centre.
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PROPOSITION X,

174. Theorem.—Two parallel secants intercept equal arcs.

DeM.—Let the parallels LM and RS intersect the circumference AECF ; then
sre the intercepted arcs AB and DC equal.

Draw the diameter EF perpendicular to one
of the parallels, as LM, whence it will be per-
pendicular to the other (Z£4). Draw the radii
OB and OD. Revolve the portion of the figure
on the right of EF, upon EF until it falls on the
plane on the left of EF. Then, since RS and
LM are perpendicular to EF, IS will fall in IR,
and HM in HL. Moreover, as there cannot be
two equal oblique lines on the same side of a
perpendicular, and from the same point (140),
OD and OB must coincide, and D fall at B. In like manner C falls at A, and
CD coincides with AB. Therefore CD = AB. Q. E. D.

Fia. 138.

PROPOSITION XI. R

175. Theorem.—If a secant be parallel to a tangent, the arcs
intercepted between the intersections and the point of tangency are
equal.

DEM.—Let the secant LM be parallel to P
the tangent RS ; then is CP = EP. R %
For, draw the radius OP to the point of / \
tangency; it will be perpendicular to the —¢& D EM
tangent (173), and also to the parallel
LM (144). But a radius which is perpen- o
dicular to a chord, as OP to CE, bisects the
subtended arc (159), hence CP =EP. In
like manner, if VU is parallel to LM,
CB =EB. QE.D. v v e U
Fa. 139,

176. Cor—Two parallel tangents include equal arcs between the
points of tangency ; and these arcs are semi-circumferences.
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EXERCISES.

1. Draw a circle ano divide it into two equal parts. What proposi-
tion is involved ?

2. Given a point in a circumference, to find where a semi-circum-
ference reckoned from this point terminates. What proposition is
involved ?

3. Prob.—To hisect a given arc.

SoLuTiOoN.—Let AB be an arc which we wish to
bisect.* Draw its chord AB, and erect 00’ bisecting
the chord, by (130). Now, as 00’ is perpendicular
to the chord at its middle point, it bisects the arc by
(162),since there can be but one perpendicular at the
middle point of the chord. The arc AB is, therefore,
Fra. 140. bisected at C, 1.e., AC = CB.

4. Prob.—To bisect a given angle.

Sue.—The method of solving this is given in PART I. The student should
do it as there directed, and then point out the principle upon which the method
depends.

5. In a circle whose radius is 11 there are drawn two chords, one
at 6 from the centre, and one at 4. Which chord is the greater? By
what proposition ?

6. In a certain' circle there are two chords, each 15 inches in
length. What are their relative distances from the centre? Quote
the principle.

7. There is a circular plat of ground whose diameter is 20 rods.
A straight path in passing runs within 7 rods of the centre. What
is the position of the path with reference to the plat? What is the
position of a straight path whose nearest
point is 10 rods from the centre? One
whose nearest point is 11 rods from the
centre?

8. Pass a line through a given point,
and parallel to a given line, by the prin-
ciples contained in (174) and (165).

Fra. 141.

* This eolntion and many others are given, not 8o much that it is feared that the student
will not be able to #olve the problems, as to afford models for describing the process. In
this case an arc should be drawn firat, and all trace of the centre obliterated. 7'2en proceed as
directed.
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9. Prob.—To draw a tangent to a circle
at a given point in the circumference.

SoLuTION.—Let P be the point at which a tan-
gent is to be drawn. Draw the radius OP to the
given point of tangency, and produce it any con-
venient distance beyond the circle. Erect a per-
pendicular to this line at P, as MT; then is MT a
tangent to the circle (172).

Fie. 141%,

10. Prob.—To find the cewntre of a circle whose circumference 18

known, or of any arc of it.

Sue.—The process is given in PART I. Do the work as there directed, and

then show upon what proposition in this section it is founded.

SYNOPSIS.
( DiameTERs. Pror. 1.  How divide circles and circumferences.
( Cor. 1. Bisects angle.
Prop. II. Radius perp. | Cor. 2. Converse of Cor. 1.
to chord. Cor. 8 . “ oo«

Cor. 4. Dist. from centre.
CHORDS. J Prop. III. Distance of equal chords from centre.
Prop. IV. Equal arcs, and converse,

Prop. V. Unequal arcs.

Prop. V1. Unequal chords. Dis-
tance from centre. } Cor. Converse,

Prop. VII. Intersect in only two points.

Prop. VIII Ifaline intersect in one . :
point, it intersects . C77- Line oblique
also in another.

Prop. IX. Line perpendicular to
radius at extremity. } Cor. Converse.

Pror. X1. Secant par. to tangent. { tangents.

Prob. To bisect an arc.
Prob. To bisect an angle.

RELATIVE POSITIONS OF STRAIGHT LINES AND
CIRCUMFERENCES.
3
B
8

L
{ Prop. X. Parallel secants intercept equal arcs.
{ Prob. To find centre of circumference or arc.

to radius at extr.

Cor. Two parallel

Prob. To draw a tangent at a point in circumference.
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SECTION V.

OF THE RELATIVE POSITIONS OF CIRCUMFERENCES.

PROPOSITION L

17%. Theorem.—All the circumferences which may be passed
through three points not in the same straight line coincide, and are
one and the same.

DEM.—Let A, B, and C be three points not in the same straight line; then
all the circumferences which can be passed through them will coincide.
For join the points, two and two, by straight lines, as AB and BC. Bisect
these lines with perpendiculars, as DF and EH. Since
) AB and BC are not ip the same straight line, DF and
/ F: \C EH will meet when sufficiently produced, at one and
H /A only one point, as O, because they are straight lines
e } Now, every point in FD is equally distant from A and
{ “7E/ B, and every point in HE is equally distant from B and
\ B / C (129). Hence O is equally distant from the three
h B points A, B, and C; and, if a circumference be drawn
with O as a centre, and a radius AO, it will pass through
the three points. Moreover, every circumference pass-
ing through these points must have O for its centre, since the centre must be in
FD (otherwise it would be unequally distant from A and B), and also in HE
(129). But these lines intersect only in 0. Also, every circumference with O
as its centre, and passing through A, must have AO for its radius. Hence, as
all circles having the same centre and the same radius coincide, all those passing
through three points, A, B, and C, coincide. Q. E. D.

178. Cor. 1.—Through any three points not in the same straight
line a circumference can be passed.

179. Cor. 2.—Three points not in the same straight line determine
& circumference as to position and extent ; i.e., in all respects.

180. Cor. 3—Two circumferences can intersect in only two
points.

For, if they have three pointg common, they coincide, and form one and the
same circumference.
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PROPOSITION II.

181. Theorem.—Two circumferen- ™M N
ces which intersect in one point, tntersect
also in a second point.

DeEM.—Let M intersect N at P. As M passes
from without to within the circle N, it has points
both without and within. Now, for M to re-
turn into itself from any point within N, as Y,
to any point without, as X, it must intersect N;
but it cannot intersect in P, for a circumference
does not intersect itself. Hence, it intersects in
a second point, a8 P’. Q. E. D.

. Fie. 143.

PROPOSITION IIL

182. Theorem.—If a straight line be drawn through the cen-
tres of two circles, of the iniersections of either circumference with
-that line, the one on the side toward the centre of the other circle s
the nearest point in this circumference to that centre, and the one on
the opposite side is the farthest point from that centre.

DeM.—Let M and N, or M’ and N’, be two circumferences whose centres are
0 and O’. Draw an indefinite line through these centres. Let A and H be the
intersections of M or M’ with this line, of which A is on the side of M or M’
toward the centre O’, and
H is on the opposite side.
Then is A the nearest point
in M or M’ to O’, and H the
farthest point from O’.

First, To show that A is
nearer O’ than any other
point in the circumference.
A will lie between O and O’,
in O’, or beyond O’. When
A lies between O and O’, as in M, let P be any other point in M, and draw OP
and O'P. Now OO’ being a straight line, is less than OPO’, a broken line.
Subtracting OA from the former, and its equal OP from the latter, we have AO’
< PO’. When A falls at O’ the truth is self-evident. When A lies beyond O,
asin M’, let P be any other point in M’, and draw OP and O'P. Now OP +
00’ > OP (= OA). Subtracting 00’ from both, we have O'P > OA — o0’
(= O'A). Hence, in any case, A is the nearest point in Mor M’ to O'.

Second, To show that H is the farthest point in M or M’ from O’. In either
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figure, let P’ be any other point in the circumference than H, and draw OP”
and O'P. Now, PO + 00’ > P’'O’. But P'O = HO. Hence HO + 00’ (=
HO") > PO’

PROPOSITION IV.

183. Theorem.— When the distance between the cenires of two
ctrcles is greater than the sum of their radii, the circumferences are
wholly exterior the one to the other.

DeM.—Let M and N be the circumferences of two circles whose centres are
O and O’. Let OO’ be greater than the

L N sum of the radii. Then are M and N
wholly exterior the one to the other.

For A, the intersection of M with

S A8 00’, is between O and O’, since OA <

00’. Now, by hypothesis, 00’ > OA

+ BO’. Subtracting OA from both, we

have A0 > BO’. Hence, as the nearest
point in M is farther from O’ than the
circumference of the latter circle, M lies wholly exterior to N. Q. E. D,

Fie. 145.

184. Cor.—Conversely, When two circumferences are exterior the
one to the other, the distance between their centres i greater than the
sum of their radii.

DeM.—For, join the centres OO’ with a straight line. Now the point A
where this line cuts the circumference M is the nearest point in this circumfer-
ence to the centre O’. But, by hypothesis, this (and every other point in cir-
cumference O) is without circle O’. Hence, AO’ > BO’. To each add OA,
and OA + AO’ (or 00’) > OA + BO'.

PROPOSITION V.

185. Theorem.—When the distance between the centres of two
eircles is equal to the sum of their radii, the circumferences are tan-
gent to each other externally.

DEM.—Let M and N be two circumferences, and 00’, the distance between
their centres, be equal to OC + O’C’, the sum of their radii; then are the cir-
cumferences tangent to each other externally.

i

TN 1L

u A



RELATIVE POSITIONS OF CIRCUMFERENCES. 89

The point A, where M cuts the line join-
ing the centres, is between O and 0O, since M
OA < 00’ by hypothesis. Moreover, A
is the nearest point in M to the centre O’. *
Again, as 00’ = OC + O’C/, subtracting OA
from the first member, and its equal OC from
the other, we have O’A = O’C’; that is, A is in Y
the circumfercnce N. Hence, as A lies in N, c
and all other points in M are more distant c
from O’ than the length of the radius O'C’, M Fio. 146.
is entirely without N, except the point A, and the circles are tangent to each
other externally. Q. E. D.

186. Cor. 1.—Conversely, When two circumferences are tangent
to each other externally, the distance between their centres 18 equal to
the sum of their radii.

DEM.—M being tangent to N externally, the point in M nearest the centre O’
must be in N, while all other points in M are exterior to N. Now, the point in
M nearest to O’ is A on the line joining their centres (182). A is therefore the
point of tangency, and 00’ = OA + O’A.

18%7. Cor. 2.— When two circumferences are tangent to each other
ezternally, the point of tangency s in the line joining their centres.

PROPOSITION VI.

188. Theorem.— When the distance between the centres of two
circles 13 less than the sum and greater than the difference of their
radii, the two circumferences intersect.

DeM.—Let M and N be the circumferences of two circles whose centres are
O and O’. Let the radius of

M be equal to or greater than M N- M N

the radius of N. Now, if 00’

M and N intersect. H O B o H W
For, when 00’ > OA, 00’

< OA + O’B gives 00’ — OA

(= AO) < 0'B; and when Fie. 147, )

00’ < OA, 00’ > OA — 0'B gives O'B > OA — 00’ (= A’O). Hence the

nearest point in M to O’ lies within N. Again, to the first member

of 00’ > OA — O’B add HO, and to the second its equal OA, and we

have 00’ + HO (= HO") > 20A — O’B. Now,since O’B < OA,* by hypothesis,

the difference 20A — O'B> 0’B. Hence, HO’ > O’B, and H lies without N. As,

* Read * Q’B is equal to or less than QA.”
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therefore, M has one point at least within N and one without, M and N inter—
sect. Q. E. D. .

189. Cor.—Conversely, When two circumferences intersect, thee==
distance between their centres is less than the sum and greater thar=—=
the difference of their radii.

DEeM.—Let the radius of N be equal to or less than the radius of M. As themmmme
circumferences intersect the farthest point H’ of N from O must be farther fror——m
O than the length of the radius of M, 1. e., must lie without that circle. So wemme
have by hypothesis H’'O > OA. Subtracting H'O’ from the first member and it=m 8
equal BO’ from the second, we have H'O — O’H’ (= 00’) > OA — BO’; that is ==,
the distance between the centres is greater than the difference of the radii i i.
Again, as the nearest point in M to O’ must lie within N, we have AQ’ < BO ==,
and adding OA to both members, OA + AO’ (= 00’) < OA + BO’; that is, them _e
distance between the centres is less than the sum of the radii.

PROPOSITION VII

190. Theorem.— When the distance between the centres of twc—=0
unequal circles is equal to the difference of their radii, the less ctr——’
cumference is tangent to the other internally.

DeM.—Let M and N be the circumferences of two circles whose centres O and Sl
O’ are so situated that 00’ = OC — O’C’; then are the=—=—
circles tangent to each other internally.

For, let N be the circumference of the less circle, so
that OC > O’C’. Let HH’ be a diameter of M. By
hypothesis 00’ = OC — 0’C’. Now, subtracting each
member of this eq .ulity from OH’, we have OH’ — 00’

(= O’'H) = 0’C’. Whence it appears that H’, the point

in N at the greatest distance from O, is in M; and, con-

Fie. 148. sequently, that every other point in N is within M.
Hence, N is tangent to M internally. Q. E. D.

191. Cor. 1.—Conversely, Wken a less circumference is tangent to
a greater tinternally, the distance between their centres equals the
difference of their radii.

DEeM.—The less circumference N being tangent to the greater M, internally,
the point in N at the greatest distance from the centre O of M, must be in M,
while all other points of N lie within M. Now H’in the line passing through
the centres is the point of N at the greatest distance from O. Hence we ob-
serve that 00’ = OH’ — O’H/, 1. ¢., the difference between the radii.
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192. Cor. 2—When one circumference 1is tangent to another in-

ternally, the point of langency is in the line passing through their
centres.

193, Scr.—If the radii are equal the two circumferences coincide.

PROPOSITION VIIL

194. Theorem.— When the distance between the centres of two
wenequal circles 18 less than the difference of their radii, the less cir-
cumference 18 wholly within the greater.

DeM.—Let N be a less circumference than M, and 00’, M
the distance between theircentres, be less than OA —O’'H’, N
the difference of their radii; then is N wholly within M.
~ For, to each member of 00’ < OA — O’H’ add O'H’, and A
we have 00'+0’H’< OA. But 00’ +0’H’=0H’. Hence
OH’ < OA, and H/, the farthest point in N from O, is with-
in M, and consequently N lies wholly within M. Q. E. D. Fre. 149.
195. Cor.—Conversely, When a less circumference is wholly
within a greater, the distance between their centres ts less than the
difference of their radii.

DeM.—If N lies wholly within M, the farthest point in N from O, the centre
of M, must be nearer O than is any pointin M, . e., OH’< OA. Now, subtract
O’H’ from each member, and we have OH' — O'H’ (= 00") < OA — O'H’,
Q E. D.

196. Sca.—If the centres coincide so that 00’ = 0, the circumferences are
said to be concentric. 1If, at the same time, their radii are equal, they are coin-
cident.

PROPOSITION IX.

197. Theorem.— When two circumferences intersect, the line
which passes through their centres is per-
pendicular to their common chord at its
middle point.

DEM.—Let the circumferences M and N
intersect in the points P and P’ (181); let
PP’ be the common chord, and LR the line
passing through the centres O and O’; then is
LR perpendicular to PP,
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For O’ is equally distunt from the extremities P and P’, and O is also equally
distant from P and P’. Hence, as LR has two points equally distant from the
extremities of PP/, it is perpendicular to PP’ at its middle point. Q. E.D. -

. PROPOSITION X,

198. Theorem.— When one circumference is tangent to anuther,
etther externally or internally, they have a common rectilinear* tan-
gent at their common point.

DeM.—Since the radii of the two circles drawn to the common point form
one and the same straight line (187, 192), a line perpendicular to one at its
extremity is perpendicular to the other also. And a line which is perpen-
dicular to a radius at its extremity is tangent to the circle (172). Q. E. D.

199. Cor.—All circumferences having their centres in the sams
line, and having but one common point, are tangent to each other,and
have a common rectilinear tangent at the common point.

EXERCISES.

1. Prob.—To pass a circumference through three given points
not tn the same straight line.

Sua.—The process should be gone through with as learned from Parrt I,
and then the reasons for the process given as furnished by this section.

2. To pass a circumference through two.given points, whose
center shall be in a given line,

3. Prob.—To circumscribe a circumference about a given triangle,
and give the reasons for the process.

4, The centres of two circles whosé radii are 10 and 7, are at 4
from each other. What is the relative position of the circumfer-
ences? What if the distance between the centres is 17? What if
20?7 What if 2? What if0? What if 3?7

* Straight line,
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5. Given two circles 0 and X
0, to draw two others, one X

of which shall be tangent to

these externally, and to the o) - o
other of which the two given

circles shall be tangent in-

ternally. Giveall the princi-

plesinvolved in the construc-

tion. Give other methods.

6. Given two circles whose
ndii are 6 and 10, and the Fa. 181,
distance between their centres 20. To draw a third circle whose
redins shall be 8, and which shall be tangent to the two given cir-
ces? Can a third circle whose radius is 2 be drawn tangent to
the two given circles? How will it be situated ? Can one be drawn
tangent to the given circles, whose radius shall be 1? Why?

RELATIVE POSITIONS OF CIRCUMFERENOCES.

SYNOPSIS.

. Cor. 1. A circf. can be passed.
Prop. 1. Through three points.{ Cor. 2. A circf. determined by.

,

Cor. 8. Intersections of two circf’s.
Prop. IL Two circumferences which intersect in oné point.

Prop. 1I1. Points in one circumference nearest to and farthest from the
centre of another,

E r Pror. IV. Greater than sum of radii. { Cor. Converse.
B
s+ § Cor. 1. Converse.
E 5 Pror. V. Equal to sum of radii. { Cor. 2. Point of tangency.
% Q
Pror. VI Less than sum and greater than
{ Eg J difference of radii. { Cor. Converse.
&
gE Cor. 1. Converse.
0 Prop. VIIL Equal to diff. of radii.; Cor. 2. Point of tangency.
ok Sch. Radii equal.
<
8 . .. § Cor. Converse.
5 L mP. VIIL Less than_ diff. of radii. { Sch. Conbentric, Coincident.

Prop. I1X. Perpendicular to common chord.

Prop. X Con:hmon tangent to two circles tangent to each } Cor. To sll
other.

Prob. To pass circumference through three points.
me' { Prob. To circumscribe a triangle w%th a circumference.
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SECTION VI.

OF THE MEASUREMENT OF ANGLES.

200. Angles are said to be measured by arcs, according to the
principles developed in the three following propositions.

PROPOSITION L

201. Theorem.—In the same or in equal circles, equal a7~
subtend equal angles at the centre.

DeM.—In the equal circles M and N, let arc AB = arc DC; then will =3¢
angles O and O, called angless #*

M N thecentre, be equal. For, placi %8
c N upon M so that O’ shall fenll

on O, and O'D on OA, sin<?®

o the circles are equal, D will fen 21
on A; and since, by hypothes&£»
b @r¢DC =ar¢AB, C will fall >3

B
A

B. Hence, 0'C will coincidl <

with OB, and angle O’ = angZ<®

Fro. 18 0, because they coincide whes®
’ applied. Q E. D.

202. Cor. 1.—Conversely, In the same or tn equal circles,equwz
angles al the centre intercept equal arcs.

DeM.—If, by hypothesis, angle O’ = angle O, in the equal circles M and N,
arc DC = arc AB. For, placing circle N upon M, so that O’ shall fall on O,
and O’D on its equal OA, D falls on A, and, since angle O’ = angle O, O’'C takes

the direction OB, and, being equal to it, C fallson B. Hence, DC and AB co-
incide and are equal.

203. Cor. 2.—A right angle at the centre intercepts a quarter of
a circumference, and 18 said to be measured by it. Hence, a semi-
circumference 18 the measure of two right angles, and a whole cireum-
Serence of four.
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PROPOSITION I

204. Theorem.—In the same or in equal circles, arcs which are
en the ratio of two whole numbers subtend angles at the centre which

Aave the same ratio, whence the angles are to each other as the arcs
ahich subtend them.

DeM.—In the equal circles M and N, let the arcs EF and IH, which subtend
the angles O and O’ at the centre, be in-the ratio of 5 to 8; then are the angles
O and O’ in the ratio of 5 to 8,
and we have M

angleO:angleQ’ :: arcEF : arclH.

For, divide EF into 5 equal
parts, as Ea, ad, etc., then |H can
be divided into 8 such parts, le,
ef,etc. Draw the radii Oa, 00,
Oc, etc., and O’e, O’f, O'g, etc.;
and, since these partial arcs
are equal, the partial angles
which they subtend are equal,

by the preceding proposition. Now, O is composed of 5 of these angles, and
O’ of 8; whence

Fia. 158.

angle O : angle O’ :: 5 : 8.
But,ar¢ EF : arc IH ::5:8.

Hence, the two ratios being equal, we have
angle O’ : angle O :: arc|H : arc EF.

As the same method could be pursued in case the arcs were to each other as
any other two whole numbers, the argument is general.

205. Cor.—Conversely, In the same or in equal circles, angles at
the centre which are in the ratio of two whole numbers are to each
other as their intercepted arcs.

DeM.—Thus, let angle O’ be to angle O in the ratio of 8 to 5. Conceive O’
divided into 8 equal partial angles, then will O be divisible into 5 such partial
angles. Now, the partial angles being equal, their intercepted arcs are equal,
By the preceding proposition, Cor.1. Whence,

ar¢ IH :arc EF ::8: 6.
But, angle O’ : angleO :: 8 : 5, by hypothesis.
Hence, arc IH : arc EF :: angle O’ : angle O.

And the same method could be pursued with angles having the ratio of any
other whole numbers.
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PROPOSITION IIL.

206. Theorem.—In the same circle or in equal circles, two in—
commensurable arcs are=

M N to each other as the angle=s=
. which they subtend at them
centre.
(o)

DeM.—In the equal cir——
H cles M and N, let EF and |HEEEER
& be incommensurable arcs— -
I L Now there is some arc tosss>

Fe. 15, which EF bears the same==—=
ratio as angle O to angle 0. —
If that arc is not IH let it be IL, an arc less than IH, so that
angle O : angle O :: arc EF : arc IL*
Conceive EF divided into equal parts, each of which is less than LH,} the as. ——
sumed difference between IH and IL. Then conceive one of these equal parts =S
to be applied to IH as a measure, beginning at |. Since the measure is less =S
than LH, at least one point of division must fall between L and H. Suppose K =%

to be such a point. Draw O’K. Now, the arcs EF and IK are commensurable, =
and by the last proposition

angle O : angle 10K : : arc EF : are IK. But we assumed that
angle O : angle IO'H : : arc EF : arc IL.

In these proportions the antecedents being alike, the consequents should be pro- ——
portional, so that

angle 10’K should be to angle IO'H : : are IK : are IL.
Baut this proportion is false, since
angle I0’K < angle I0’H, whereas arc IK > are IL.

In a manner altogether similar (the student should supply it) we can show
that
angle O is not to angle O’ : : arc EF : any arc greater than IH.

Hence, as the fourth term of the proportion cannot be less or greater than IH, it
maust be |H itself; and

angle O : angle O’ : : arc EF : arc |H. Q. E. D.

207. Cor.—Conversely, In the same or in equal circles, two incom-
mensurable angles at the centre are to each other as the arcs which
they intercept. '

* This is a false hypothesie, and the object of the argument following is to show its
falsity.

+ This can be done by supposing EF bisected, then the halves bisected, then the fourths
bisected, and this p of bisecti tinued until the parts are each less than LH.
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Dem.—In the equal circles M and N, O and O’ being incommensurable
angles at the centre, are to each other as thearcs EF and IH. If not, let us sup-
pose

arc EF : arc IH : : angle O : angle 10°L, an angle less than O’.

Divide O into equal partial angles, each less than LO’H, the assumed differ-
ence between IO’H and I0’L.  Also conceive this angle to be applied as a
measure to 10’H, beginning at O’l. At least one line of division will fall be-
tween O'L and O'H. Let O’K be such a line. Now, as O and I0’K are com-
mensurable, we have by (205),

arc EF : arc K : : angle O : angle I0’K.
But by supposition
are EF : arc IH : : angle O : angle |O’L.

Therefore, since the antecedents are the same,
are IK should be to arc IH : : angle IO’K : angle 10’L.

But this is false, since
arc IK < arc IH, whereas angle I0’K > angle I0'L.

Whence we learn that the fourth term of the proportion cannot be less than
angle 10’H. 1In a similar manner it can be shown (let the student do it) that it
cannot be greater. Hence it must be 10’H itself; and

arc EF : are IH : : angle O : angle IO’H.

208. Sca.—Out of the truths developed in the three preceding proposi-
tions grows the method of representing angles by degrees, minutes, and seconds,
sgiven in Trigonometry (PART IV., 3-6). It will be observed, that in all
cases, if arcs be struck with the same radius, from the vertices of angles as
centres, the angles bear the same ratio to each other as the arcs intercepted by
their sides. Hence the arc is said to measure the angle. Though this language
is convenient, it is not quite natural; for we naturally measure a quantity by
another of lke kind. Thus, distance (length) we mensure by distance, as when
we say a line is 10 inches long. The line is length ; and its measure, an inch,
i8length also. 8o, likewise, we say the area of a field is 4 acres : the quantity
meagured is @ surface ; and the measure, an acre, is a surface also. Yet, not--
withstanding the artificiality of the method of measuring angles by arcs;.
instead of directly by angles, it is not only convenient but universally used ; and
the stndent must know just what is meant by it. For example, a circumference
i8 conceived as divided into 860 equal arcs, called degrees. Hence, as a right
angle at the centre is subtended by one-fourth of the circumference, it is called
anangle of 90 degrees. 180 degrees is the measure of two right angles, 45 de-
grees, of half a right angle, etc. Thus we get a perfectly definite idea of the

7
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magnitude of an angle from the statement of the number of degrees which
measure it; and, for brevity, the angle is spoken of as an angle of the same
number of degrees as the intercepted arc.

209, An Inscribed Angle is an angle whose vertex is in 8
circumference, and whose sides are chords, or a chord and diamete .

of that circumference.

PROPOSITION IV.

210. Theorem.—An inscribed angle 18 measured by half £ 7a¢

arc intercepted between tts sides.

DeM.—First, when one side s a diameter. Let AF>B
be an inscribed angle, and PB a diameter; then is AF™B
measured by one-half of arc AB. For, through tJne
centre O, draw the diameter DC parallel to the cho» mrd
PA; then COB = POD (134), whence arc CB = a=7¢
PD (202), also COB =APB (152); and arc PD = @@= 7¢
AC (174), whence PD =CB = $}AB. Now COB i
measured by CB (208); hence APB is measured B3
CB =3}AB. QE.D

Becond, when both sides are chords and the centre of 784
circle lies between them. Let APB be such an angles-
Draw the diameter PC. Now, by the preceding part
APC is measured by $AC, and CPB by {CB. Hence
APC + CPB, or APB, is measured by $AC + $CB, or
$AB. QE.D.

Third, when both sides are chords and the cenire les
without the angle. Let APB be such an angle. Draw the
diameter PC. Now APC is measured by ¢ AC, and BPC
by $BC. Hence APC — BPC, or APB, is measured by
$AC —3BC, or $}AB. @ E. D.



R MEASUREMENT OF ANGLES.

211. Cor.—In the same or equal circles all
angles inscribed in the same segment, intercept
equal arcs, and are consequently equal. If the
segment 13 less than a semicircle, the angles are
obtuse ; if a semicircle, right ; if greater than a
semicircle, acute.

ILr.—In each separate figure the angles P are equal,
for they are each measured by half the same arc. . . . In
©, each angle P is acute, being measured by }m, which
is less than a quarter of a circumference. . . . In 0/, each
angle P is a right angle, being measured by }m', which
is a quadrant (quarter of a circumference). . . . In 0",
each angle P is obtuse, being measured by }m'/, which is
greater than a quadrant.

ScH.—The converse of this proposition is usually taken
for granted ; i.e., that if the several angles P, P, etc,, are
equal and subtended by the same chord, their vertices lie
in the circumference. This is readily proved rigorously
after the next two propositions. Thus, if vertex P were
-wwithout, the angle would be measured by }AB — } the
other intercepted arc ; and if within, by $AB -} the other
ZEmtercepted arc,

PROPOSITION V.

Fie. 158.

212. Theorem.—Apy angle formed by two chords intersecting
7 a circle 18 measured by one-half the sum of the arcs intercepted
& etween 1ts sides and the sides of its vertical, or opposite, angle.

DemM.—Let the chords AB and CD intersect at
¥ then is APD, or its equal CPB, measured by
=& (AD +CB); and APC, or its equal BPD, is measured
Ty 3 (AC + BD). ’

For, through C draw CE parallel to BA; whence
ECD = APD (152), and CB = EA (174). But ECD is
Xmeasured by 4 ED (210), which equals } (AD + EA)=
3 (AD + CB).

That APC, or its equal BPD, is measured by

$(AC + BD), appears from the fact that the sum of the

Fia. 159.

four angles about P being equal to four right angles, is measured by a whole
circumference (208). But APD + CPB is measured by AD + CB; whence
APC + BPD, or 2 APC, is measured by the whole circumference minus (AD +CB);

that is, by AC+BD. Then is APC measured by  (AC+BD).
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213. ScE.—The case of the angle included between two chords passes
into that of the inscribed angle in the preceding proposition, by conceiving AB
to move parallel to its present position until P arrives at C and BA coincides
with CE. The angle APD is all the time measured by balf the sum of the in-
tercepted arcs; but, when P has reached C, CB becomes 0, and APD becomes
an inscribed amgle measured by half its intercepted arc.

In a similar manner we may pass to the case of an angle at the ceatre,
by supposing P to move toward the centre. All the time APD is measured by
3+(AD + CB); but, when P reaches the centre, AD = CB, and { (AD + CB) =
$(2AD) = AD; 4. ¢., an angle at the centre is measured by its intercepted are.

PROPOSITION VL

214. Theorem.—An angle formed by two secants mesting with-
out the circle is measured by one-half the difference of the intercepied
arcs.

Dem.—Let APB be an angle formed by the two 8-

P cants AP and PB; then is it measured by } (AB —GD),
1. ¢., one-half the intercepted arcs.

For, draw CE parallel to PB; then CD = EB (174),

and ACE =its corresponding angle APB. But ACEis

measured by § AE=} (AB—EB)=} (AB—OD). Q. B.D.

215. ScH—This case passes into that of an in-
scribed angle, by conceiving P to move toward C, thus
diminishing the arc CD. When P reaches C, the angle
becomes inscribed ; and, as CD is then 0, $ (AB — CD)

E = $AB. Also, by conceiving P to continue to move

Fie. 100. along PA, CD will reappear on the other side of PA,

hence will change its sign,* and § (AE — CD) will become § (AE + CD), as it

should, since the angle is then formed by two chords intersecting within the
circumference.

PROPOSITION VIL

216. Theorem.—An angle formed by a tangent and a chord

drawn from the point of tangency is measured by oné-half the inter-
cepted are.

* In accordance with the law of positive and negative quantities as used in mathematics,
whenever a continuously varying quantity is conceived as diminishing till it reaches 0, and
then as reappearing by the same law of change, it must change its sign.
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Dmu. —Let TPA be an angle formed by TM
tangent at P, and the chord PA; then is TPA
measured by one-half the intercepted arc AP.
For,.draw any chord CD parallel to TM and
cutting AP, Then CEA = TPA. But CEA is
measured by { (AC + PD). Hence, as PD =CP
(175), TPA is measured by 4 (AC + CP), or }
AP. Q E.D.

Show that APM is measured by  arc AmP.

Algo, observe how the case of two secants
(214) passes into this.

PROPOSITION VIIIL,

T——P
C M
D

A

Fie. 161,

21%. Theorem.—An angle formed by two tangents is measured

by one-half the difference of the intercepted
ares.

DEm.—Let APB be an angle formed by the

two tangents AP and PB; then is it measured by
4 (@re CmD — ars CnD), ¢. 6., one-half the differ-
ence of the intercepted arcs. For, through one of
the points of tangency, as C, draw a chord, as CE,
parallel to the other taugent. Now, ACE is
measured by § arc CE, by the last proposition.
But ACE = APB, and aro CE = CmD — DmE =
€mbD — CnD, since CaD = EmD (175). Hence,
#A\PB is measured by $ (CeD — CnD). Q. E. D.

218. Sca—The case of two sccants (214)
¥oasses into this by supposing the secants to
sseparate until they become tangents.

EXERCISES.

1. Prob.—Through a given point to draw a parallel to a given
@ine, on the principles contained in (152), (201), and (165).

SoLuTior. —Through P to draw a parallel to AB. From P as a centre, with

any radius greater than the distance
from P to AB, describe an arc cut-

ting AB, as 2. From a as a centre, g
with the same radius, strike an arc

o
\
through P, intersecting AB, as Pb. \.‘. -

Take the chord Pb and apply it
from @ on the arc ac, as 0. These
chords being equal, the arcs Pb and

Fia. 168,
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C a0 are equal (165). Again, angle Pab = angle
OPag, since they are measured by equal arcs struck
with the same radius (201). These alternate

A 5 B  angles being equal, MN is parallel to AB (152)
2. In Fig. 164 there are 4 pairs of equal
angles. Which are they, and why? Show
also that coB = ABD + CDB, by (210)
o and (212). Show also that DOB = ABC +

Fie. 164. DAB.

3. Prob.—From a point without a circle to draw « tangent o
the circle.

SoLuTiON.—Let O be the given circle, and P the given point. Join P with
the centre O, and upon PO as a diameter describe a circle. Let T and T’ be
the intersections of the two cir-
cumferences. Now, if lines te
drawn from P through T and T',
they will be tangent to the cir
cle 0. For OTP and OTP,
being inscribed in semi-circles,
are right angles (211). Hence,
PM is perpendicular to radius
OT at its extremity T, and
is therefore a tangent (I172)
In like manner PT’ is shown
to be a tangent, and we see
that from a point without a cir-
cle two tangents can be drawn to
the circle.

4, Prob.—O0n a given line, to construct a segment which shall
contain a given angle.

SoLuTION. — Let AB be
the given line, and O the
given angle. At one ex-
tremity of the given line, as
B, construct an angle ABC
equal to the given angle O,
which shall lie on the oppo-
site of AB from that on which
the required segment is to
lie. Erect a perpendicular
to the line CB at B, and also
a perpendicular bisecting
AB. Let FB and FE be
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these perpendiculars, intersecting at F. From F as a centre, with a radius
equal to FB, describe a circle. Then is AHB the segment required. For,
CB being perpendicular to radius FB at its extremity, is tangent to the
circle, and angle ABC (= angls O) is measured by } of arc AmB (216). Now,
any angle inscribed in the segment Am'm''B, as AHB, has } AmB for its
measure, and is, consequently, equal to O.

ANOTHER SOLUTION.—On the side of AB on which the segment is to lie, draw
any line through either extremity of AB,
making an acute angle with AB. Let CB
be such a line. At any point in CB, as
C, draw a line CE, making angle ECB =
the given angle O, Fig. 166. Through A
pass a parallel to CE (see Ez. 1), as AD.
Pass a circumference through A, D, and
B. Any angle inscribed in segment AmB
is equal to O. [Let the student give all
the reasons, and make the construction.
‘The requisite marks for the construction
are made in the figure. Why is it said,
make CBA an acute angle? When would
a right angle answer? When an obtuse
angle?]

m__
L
Y
i

SYNOPSIS.
How angles are measured.

Cor. 1. Converse.
Pror. I. Equal arcs subtend equal .
angles at the centre. Cor. 2. Measure of 1, 2, and

Prop-

Prop. V. Angle between two chords. }Sch Compared with preceding.
Prop. V1. Angle between two secants. }Sch Compared with Prop. IV.
Prop. VII. Angle between tangent and chord.

Prop. VIIL Angle between two tangents. }Sch Compared with Prop. V1.

4 right angles.

: Pror. I1. Commensurable arcs in the same ratio

E as their subtended angles. } Cor. Converse.
g Cor. Converse. .
< Prop. III. Incommensurable arcs.{ Sck. Method of measuring
& angles.
E Inscribed angle, what ?
g Prop. IV. Inscribed angle, how measured. { Cor. In slﬁi‘:fr']&é)’ =0r <
7]
[l
B
@
<
Gl
~

.

Prob. To draw a parallel through a %lven point.
EXERCISES. Prob. To draw a tangent to a circle from a_point without,
Prob. To construct a segment on a given line which shall

contain a given angle.
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SECTION VII.

OF THE ANGLES OF POLYGONS, AND THE RELATION BETWEEN
THE ANGLES AND SIDES.

OF TRIANGLES.

PROPOSITION L

819. Theorem.—The sum of the thres angles of a triangle is
two right angles.

B
Dem.—Conceive a circamference passed through

P the vertices of the triangle, as abe, through the ver-
tices of the triangle ABC (58). The angle A is
measured by % arc @, B by } b,and C by 4 ¢. Hence,
A + B + C is measured by 4 (@ + b + ¢), or a
semi-circumference, and is equal to two right angles
(203). q. E. D.

Fie. 168. 220. Cor. 1.—A triangle can have only
one right angle, or one obtuse angle. Why?

221. Cor. 2.—Two angles of a triangle, or their sum, being
given, the third may be found by subtracting this sum from two right
angles, i. e., either angle is the supplement of the other two.

222, Cor. 3.—The sum of the two acute angles of a right-angled tri-
angle s equal to one right angle; i.e., they are complements of each other.

223, Cor. 4—If the angles of a triangle are equal each to each,
any one is one-third of two right angles, o7’ two-thirds of one right angle.

PROPOSITION II.

224. Theorem.—The sides of a triangle sustain the same
GENERAL relation to each other as their opposite angles ; that 1s, the
greatest side is opposite the greatest angle, the second greatest side
apposite the second greatest angle, and the least side opposits the least

angle.
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DeEM.—In the triangle ABC let C > B > A be

the order of the values of the angles; then AB > 8
AC > BC is the order of the values of the sides. -
For, circumscribe the circumference abe. The
angle C being greater than B, the arc ¢, the half of
which measures C, is greater than the arc d, the
half of which measures B. Now, the greater arc
has the greater chord (166). Hence, AB > AC. A
In like manner, if B > A, arc b > arc @, and AC >

BC. If either angle, as C, is obtuse, AB is greater Fic. 169.
than AC or BC, because it lies nearer the centre (267).

225, Cor. 1.—Conversely, The order of the magnitudes of the
sides being AB > AC > BC, the order of the magnitudes of the angles i
C>B>A .

| Let the student give the demonstration in form.]

B
226. Cor. 2.—An equiangular triangle is ¢
also equilateral ; and, conversely, an equilateral
triangle i3 equiangular.
DEMm.—If A =B = C,arc ¢ = arc b = arc ¢, and, A (o]
consequently, chord BC = chord AC = chord AB. .
b

Conversely, if the chords are equal, the arcs are, and
lence the angles subtended by these arcs. Fie. 170.

227%. Cor. 3.—In an isosceles triangls the

B
angles opposite the equal sides are equal ;
and, conversely, if two angles of a triangle
are equal, the sides opposite are equal, and
the triangle ©8 1sosceles.
Deu.—If AB = BC, arc @ = arc ¢; and hence, A
angle A, measured by { a, = angle C, measured by >

4 ¢. Conversely,if A = C, arc a == arc ¢; and hence
chord BC = chord AB. Fie. 171.
228. Sca.—It should be observed that the proposition gives only the general
relation between the angles and sides of a triangle.
It is not meant that the sides are in the same ratio

a8 their opposite angles : this is not true. Thus N

in Fig. 172 angle ¢ is twice as great as angle a; A
but side ¢ is not twice as great as side a, although

it ¢ greater. Trigonometry discovers the ezact £ > S

relation which exists between the sides and
angles.

\

Fre. 173
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PROPOSITION IIL

229. Theorem.—If from any point within a triangle lines
be drawn to the exiremities of any side, the
included angle 1s greater than the angle of the
triangle opposite this side.

DeM.—Let OA and OB be two lines drawn from
any point O within the triangle ABC, to the extremi-
ties of the side AB; then angle AOB > ACB.

For, circumscribe a circle about the triangle. Now,
ACB is measured by } AnB, but AOB i3 measured by
} (AnB + EmD). Therefore, AOB > ACB. q. E. D.

230. An Exterior Angle of a polygon is an angle formed
by any side with its adjacent side produced, as CBD, Fig. 174.

PROPOSITION IV.

231. Theorem.—An exterior angle of a triangle is equal to the
sum of the two interior non-adjacent angles.

DeM.—Let ABC be any triangle, and CBD an ex-
terior angle; then CBD = A + C.
For CBD is the supplement of CBA by (13 1), and
D cBAisthe supplement of A + C by (221). Hence,
B CBD=A +C. QE.D

Fie. 174, 232. Cor.—Either angle of a triangle not
adjacent to a specified exterior angle, 18 equal
to the difference of this exzterior angle and the other non-adjacent
angle.
Thus, since CBD = A + C, by transposition,CBD — A= C,and CBD — C
= A .



OF THE ANGLES OF QUADRILATERALS. 107

OF QUADRILATERALS.

PROPOSITION V.

233. Theorem.—The sum of the angles of a quadrilateral 13
four right angles.

DeM.—Let ABCD be any quadrilateral ; D C
then DAB + ABC + BCD + CDA = four
right angles.

For, draw either diagonal, as AC, di-
viding the quadrilateral into two triangles.
Then, as the sum of the angles of the two
triangles is the same as the sum of the an-
gles of the quadrilateral, and the sum of Fie. 175.
the angles of the triangles is twice two
right angles (219); the sum of the angles of the quadrilateral is four right
angles. Q. E. D.

PROPOSITION VI.

234. Theorem.—The opposite angles of any quadrilateral
which can be insciibed in a circle are supplementary.

DeM.—Let ABCD be any inscribed quadrilateral ;

then A + C = two 7ight angles,and D + B = two D
right angles. A
For, A is measured by 4 arc BCD, and C is meas- C

ured by § arc DAB (210). Hence, A + C is meas-

ured by one-half a circumference, and is, therefore,

equal to two right angles (203). In like manner D

is measured by ¢ are ABC, and B by } arc ADC.

‘Consequently, D + B is measured by one-half a cir-

cumference, and is, therefore, equal to two right B
mg]eg, Fie. 176.

PROPOSITION VIL

. 235. Theorem.—The opposite angles of a parallelogram are
equal, and the adjacent angles are supplementary.

DeM.—ABCD, Fig. 177, being any parallelogram, A = C,B = D,and B + C,
C+D,D + A and A + B, each = two right angles,
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For, produce any side, as AB, form-

ing the two exterior angles EAD and

D C  CBF. Since CB and DA are paralle],

and FE cuts them, the corresponding an-

E A B F gles, CBF and DAB are equal (152).

Fia. 171 Again, since EF and DC are parallel, and

CB cuts them, the alternate interior*

angles CBF and C are equal (Z52). Hence, as DAB and C are each equal to

CBF, they are equal to each other. In a similar manner D can be proved equal
to CBA. [Let the student give the proof.]

That the angles B and C of the parallelogram arc supplemental is evident

from (150), which proves that the sum of two interior angles on the same aide

of a secant cutting two parallels is two right angles. For a like reason A +~ D
= two right angles, etc.

236. Cor. 1.—The two angles of a trape-

zoid adjacent to either one of the two sides
not parallel are supplemental.

Fie. 178 [Let the student show why.]

237%7. Cor. 2.—If one angle of a parallelogram 1is rigkt, the others
are also, and the figure 18 a rectangle.

PROPOSITION VIIL

238. Theorem.—Conversely to the last, If the adjacent angles
of a quadrilateral are supplementary, or the opposite angles equal,
the figure 12 a parallelogram.

DeM.—If A + D = two right angles, AB and DC are parallel by (1£7).
For a like reason, if D + C = two right

D, angles, DA and CB are parallel. Again,

/ if A = C and D = B, by adding we

have A + D=C + B. ButA + D +

E A B F C + B = four right angles (233).
Hence, A + D = two right angles, and
AB and CD are parallel. 8o, also, A +
B can be shown to be equal to two right angles; and, consequently, AD and

CB are parallel.

F1a. 179,

# Interior with reference to the parallels (146).
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PROPOSITION IX.
239. Theorem.—If two opposite sides of a quadrilateral ars
equal and parallel, the figure is a parallelogram.

DeM.—In (a) let DC be equal
and parallel to AB; then is ABCD
a parallelogram.

For, drawing the diagonal
AC, it makes the angles ACD and
CAB equal, since they are altern-
ate interior angles(152). Con-
ceive the quadrilateral divided
in this diagonal into two tri-
angles, as in (b). Reverse the
triangle ACB and place it as in
(c). Draw DB. Since angle DCA
=angle CAB, and DC = BA, if
CBA be revolved upon AC, AB
will take the direction CD, B will
fall in D, and CBA will coin-
cide with ADC. Hence, angle
ACB = angle DAC. Baut in (@) Fig. 180
these are alternate interior an-
gles made by AC with AD and BC. Therefore, AD is parallel to BC (149)
Q E. D,

PROPOSITION X.

240. Theorem.—If the opposite sides of a quadrilateral are
equal, the figure is a parallelogram.

DeM.—In (@) let AB = DC,
and AD = BC; then is ABCD a
parallelogram.

For, divide the quadrilateral
in the diagonal AC, and revers-
ing the triangle ABC, place it
as in (¢), and draw DB. Since
AB = CD, and CB = AD, DB is
perpendicular to CA (130).
Now, revolving ABC upon CA,
it will coincide with ADC. Hence,
angle DCA = angle CAB, and
AB ig parallel to DC. Also,
angle DAC = angle BCA, and
AD is parallel to BC. There-

fore, ABCD is a parallelogram.
Q E. D. : Fie. 181,
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PROPOSITION XI.

241. Theorem.—Conversely to the last, The opposite sides o «—>f

a parallelogram are equal.

DEM.—Let ABCD be a para” =3l
lelogram ; then AB = DC, ane sd
AD = CB.

Since DC is parallel to AB, an s——n-
gle DCA=angle CAB. Also, since = ¢
AD is parallel to BC, angle DAC—=S=C
=angle ACB(152). Now, divide- ¢
the parallelogram (@) in the di— -
agonal, and place ABC as in (c)we> .
Revolve ABC on AC, until it falle===
in the plane on the other side of=
AC. Bince angle BAC = angle=
ACD, AB will take the directiomm
CD,and B will fall in CD, or CD»
produced. Since angle BCA =
angle DAC, CB will take the
Fro. 162, direction AD, and B will fall in

: AD, or in AD produced. There-
fore, as B falls at the same time in AD and CD, it falls at the intersection D, and
the triangles coincide. Hence, AB = CD, and AD = CB. Q. E. D.

242, Cor. 1.—Parallels intercepted between parallels are equal.

243, Cor. 2.—A diagonal of a parallelogram divides it into two
equal triangles.

PROPOSITION XIL

244, Theorem.—The diagonals of a parallelogram mutually

otsect each other.

DeM.—Let AC and DB be the diagonals of
the parallelogram ABCD (@), and @ their inter-
section ; then, D@ = @B, and AQ = QC.

For, take the triangle AQB, and apply it to
DQ'C, by placing BA in its equal DC, B falling at
D, and A at C, with the vertices @ and @’ on the
same side of this common line, as in (b). Now,
since angle @BA = @'DC (152), BQ will take the
direction D@, and Q@ will fall in D@’, or in D@’

Fre. 183, produced. For a like reason AQ will take the
direction CQ’, and @ will fall in CQ’, or in C®’ produced. Hence, as Q falls
at the same time in D@’ and CQ’, it falls at their intersection @’; whence

BQ=D@, and AQ=CQ’. QE.D.
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255, Sca. 3.—This proposition is equally applicable to triangles and to
quadrilaterals. Thus the sum of the angles of a triangle is 8 times two right
angles — 4 right angles (or 6 — 4) =2 right angles. So also the sum of the
angles of a quadrilateral is 4 times two right angles — 4 right angles, or 4 right
angles.

256. ScH. 3.—To find the value of an angle of an equiangular polygon,

that is, one whose angles are equal each to each, divide the sum of all the
angles by the number of angles.

PROPOSITION XVL

25%7. Theorem.—If the sides of a polygon be produced so as to
form one exterior angle (and only one) at each vertex, the sum of
these exterior angles is four right angles.

DEM.—Let n be the number of sides of any
polygon. At each of the n angles, there is an
interior and an exterior angle, whose sum, as
A + a, istwo right angles. Hence the sum of
all the exterior and interior angles is n times two
right angles. Now, from this sum subtracting
the sum of the exterior angles, the remainder
is the sum of the interior angles. But, by the
preceding proposition, 4 right angleg subtracted
from = times fwo right angles, leaves the sum
of the interior angles. Therefore the sum of
the exterior angles is 4 right angles. Q. B. D.

OF REGULAR POLYGONS,

PROPOSITION XVIL

258. Theorem.—The angles of an inscribed equilateral polygon
@re equal ; and the polygon 18 regular. '

Dru.—Let ABCDEF be an inscribed polygon, with AB = BC = CD,etc.:
then is angle A = B = C = D, etc., and the polygon is regular.
For, from the centre of the circle draw OF, OA, and OB, and also the per-
Pendiculars Oa and Ob. Revolve OFA upon OA as an axis, until it falls in the
) 8
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OF POLYGONS OF MORE THAN FOUR SIDES.

249. A Salient Angle of a polygon is one whose sides, when
produced, can only extend without the polygon.

G F 250. A Re-entrant Angle of a
polygon is one whose sides, when pro-
E  duced, can extend within the polygon.

A ILL.—In the polygon ABCDEFGC, all the an-
gles are salient except D, which is re-entrant.

(4
251. A Convex Polygon is a
8 polygon which has only salient angles.
Fie. 188, A polygon is always supposed to be con-

vex, unless the contrary is stated.

252. A Concave or Re-entrant Polygon is a polygon
with at least one re-entrant angle.

PROPOSITION XYV.

253. Theorem.—The sum of the interior angles of a polygon
i8 equal to twice as many right angles as the polygon has sides, less
four right angles. ’

DeM.—Let n be the number of sides of any
polygon; then the sum of its angles is

n times two right angles — 4 right angles.

For, from any point O, within, draw lines t«

" the vertices of the angles. As many triangles
will thus be formed as the polygon has sides, that
is, n. The sum of the angles of these triangles is

n times two right angles (219).

But this exceeds the sum of the angles of the
polygon by the sum of the angles at the common vertex O, that is, by 4 right
‘angles. Hence the sum of the angles of the polygon is

n times lwo right angles — 4 right ungles. Q. E. D.

254, Scu. 1.—The sum of the angles of a pentagon is 5 times two right an-
gles — 4 right angles, or 6 right angles: The sum of the angles of a hexagon is
8 right angles ; of a heptagon, 10; of an octagon, 12, etc.
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PROPOSITION XTIX.

261. Theorem.—The sides of a circumscribed equiangular
polygon are equal ; and the polygon is reqular.

Dem.—Let ABCDEF be a circumscribed polygon, with angle A=B = C,
etc. ; then is AB = BC = CD, etc.,, and the polygon is regular.

For, from the centre of the circle, draw OA, OB,
etc., to the vertices of the polygon, and Oa, Ob, etc.,
to the points of tangency. The latter will be per-
pendicular to the sides by (Z73). Now reverse the
triangle AaO, and apply it to AbO, placing Oc in its
equal Ob; aA will take the direction 6A. Then will
OA of the triangle AcO, fall in OA of the triangle
AbO, since there cannot he two equal oblique lines on ~ i
the same side of Ob (140). Hence angle bAO = angle C <D
@AO, and JA = ¢A. In the same. way it can be Fre. 192,
shown that OB, OF, etc., bisect the other angles, and that 5B = Be, etc.

Whence, as the polygon is equiangular, these halves are equal, that is, OAa

= OFa, etc. Then, as OA and OF make equal angles with AF, they cut off
equal distances from a, and Aa = aF. So, likewise, we can show that Ab = 2B,
and that each side is bisected at the point of tangency. Therefore, as the halves
of the sides are equal, the polygon is equilateral, as well as equiangular, and
<onsequently regular (17). Q. E. D.

PROPOSITION XX,

262. Theorem.—The angles of a circumscribed equilateral
_polygon are equal when their number is opD; and the polygon 1s
>~egular.

DreM.—Let ABCDE be a circumscribed polygon
~wyith AB=BC=CD, etc.; then is angle A=B
= C = D, etc,, and the polygon is regular.

In the same manner as in the preceding demon-
wstration, we may show that OA, OB, etc., bisect
the angles of the polygon. [The student should
go through the process.] Then revolve the tri-
angle AOE upon AO as an axis till it falls in the
plane of AOB; and as angle OAE = angle OAB,
and AE = AB, the triangles will coincide. Hence
angle OEA, the half of angle E of the polygon, Fi1a. 193.
equals angle OBA the half of B, and E=B. In like manner revolving AOB
upon OB, we can show that A=C. So also we find B=D, and D = A,

Therefore the polygon is equiangular as well as equilateral, and consequently
regular. Q. E. D.
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263, Sca.—That the above style of argument fails in the case of & polygon of
an even number of sides, may be ohserved by attemm ypt-
ing to apply it. Thus, from Fig. 182, we would haem-ve
A=C, B=D, C=E D=F E=A, and F= B
From these we have A=C =E, and B=D= F.
But the process will not give any one of the first tim 2ree

Fre. 194. angles equal to any one of the second set. That I,
1t Joes not follow that two adjacent angles are equal in case the number of sides
is even. We can readily construct a circumscribed equilateral polygon which
shall nut be equiangular.

PROPOSITION XXIL.

264. Theorem.—A circumference may be circumscribed about
any regular polygon.

DeM.—Let ABCDEF be a regular polygon. Bisect AF with a perpendicular
Oa. Any point in this perpendicular is equidistant
from A and F. Bisect AB, adjacent to AF, with a
perpendicular, as Ob. Any peint in this perpendic-
ular is equidistant from A and B. Hence the inter-
section of these perpendiculars, O, is equidistant from
A, F, and B, and a circumference described from O as
a centre, with a radius OA, will pass through F and
B. Now revolve the quadrilateral FObA upon Ob as
an axis until it falls in the plane of CObB, bA will
fall in its equal 5B ; and since angle A = angle B,
and side AF =side BC, F will fall at C. Thus it
Fio. 195. appears that the circumference described from O,
and passing through F, A, and B, also passes through
C In a similar manner it can be shown that the same circumference passes
through all the vertices, and hence is circumscribed. Q. E. D.

265. Cor. 1.—A circumference may be inscribed in any reqular
polygon.

DEem.—For, having circumscribed one about it, the equal sides become equal
chords, and hence are equally distant from the centre. If, therefore, a circle be

drawn from O as a centre, with Oa as a radius, it will touch every side of the
polygon at its middle point.

266. Coxr. 2.—The cenires of the tnscribed and circumscribed
ctrcles coincide.

26%7. The Centre of a regular polygon is the common centre
of its inscribed and circumscribed circles.
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268. An Angle at the Centre of a regular polygon is the
angle included by two lines drawn from the centre to the extremities

of a side, as FOA, AOB.

269. Cor. 3.—The angles at the centre of a regular polygon are
equal each to each ; and any one is equal fo four right angles divided
by the number of sides of the polygon.

270. The Apothem of a regular polygon is the distance from
the centre to any side, and is the radius of the inscribed circle.

PROPOSITION XXIIL.

2%71. Theorem.—The side of a regular inscribed hexzagon s

equal to the radius.

Drm.—Let ABCDEF be a regular inscribed hexagon ; then is any side, as
BC, equal to OB, the radius.

In the triangle BOC the angle O is measured by
the arc BC, or } of a circumference, and hence is
of 4 right angles, or § of a right angle. Angle ABC
is measured by } arc CDEFA, or } of a circumfer-
ence. Hence angle OBC, which is { of ABC, is
measured by  of £, or } of a circumference, and is,

consequently, equal to BOC. 8o also OCB, the half
of DCB, is measured by } of a circumference. Hence
QCB is equiangular, and consequently equilateral

(258),and BC=0B. q.E.D.

272. A Broken Line is said to be Conver when no one of its
Yarts will, when produced, enter the space included between it and

& line joining its extremities.

PROPOSITION XXIIIL

273. Theorem.—A Convex broken line is less than any broken
ine which envelops it and has the same extremities.

DEmM.—Let AbedB be a broken line enveloped
by the broken line ACDEFB, and having the
same extremities A and B; then is AbedB <
ACDEFB.

For, produce the parts of AbedB till they meet
the enveloping line, as Ab to ¢, be to f, and ed
to g. Now, since a straight line is the shortest
path between two points, As < ACe, bf < beDEf, Fre. 197.
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263. Sca.—That the above style of argument fails in the case of & polygon of
an even number of sides, may be ohserved by attempt-
ing to apply it. Thus, from Fig. 182, we would have
A=C,B=D, C=E D=F, E=A, and F=B.
From these we have A=C =E, and B=D=F.
But the process will not give any one of the first three

Fra. 194. angles equal to any one of the second set. That is,
1t does not follow that two adjacent angles are equal in case the number of sides
is even. We can readily construct a circumscribed equilateral polygon which
shall nut be equiangular.

PROPOSITION XXL

264. Theorem.—A circumference may be circumscribed about
any regular polygon.

DeM.—Let ABCDEF be a regular polygon. Bisect AF with a perpendicular
Oa. Any point in this perpendicular is equidistant
from A and F. Bisect AB, adjacent to AF, with a
perpendicular, as Ob. Any point in this perpendic-
ular is equidistant from A and B. Hence the inter-
section of these perpendiculars, O, is equidistant from
A, F, and B, and a circumference described from O as
a centre, with a radius OA, will pass through F and
B. Now revolve the quadrilateral FO’A upon Ob as
an axis until it falls in the plane of CObB, bA will
fall in its equal B ; and since angle A = angle B,
and side AF = side BC, F will fall at C. Thus it
Fia. 195. appears that the circumference described from O,
and passing through F, A, and B, also passes through
C In a similar manner it can be shown that the same clrcumfcrence passes
through all the vertices, and hence is circumscribed. Q. E. D.

266, Cor. 1.—A circumference may be inscribed in any reqular
polygon.

Dem.—For, having circumscribed one about it, the equal sides become equal
chords, and hence are equally distant from the centre. If, therefore, a circle be

drawn from O as a centre, with Oa as a radius, it will touch every side of the
polygon at its middle point.

266. CoR. 2.—The centres of the inscribed and circumscribed
ctrcles coincide.

26%7. The Centre of a regular polygon is the common centre
of its inscribed and circumscribed circles.
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each other. What is the form of the quadrilateral ? What the value
of each of the two latter angles ?

6. One of the angles of a parallelogram is § of a right angle. What
are the values of the other angles?

7. The two opposite angles of a quadrilateral are respectively £
and 4 of a right angle. Can a circumference be circamscribed ? Ir
8o, do it.

8. Two of the opposite sides of a quadrilateral are parallel, and
each is 15 in length. What is the figure? Do these facts determine
the angles?

9. Two of the opposite sides of a quadrilateral are 12 each, and the
other two 7 each. What do these facts determine with reference to
the form of the figure?

10. What is the value of an angle of a fegular dodecagon ?

11. What is the sum of the angles of a nonagon? What is the
walue of one angle of a regular nonagon? Of one exterior angle ?

12. What is the regular polygon, one of "whose angles is 11} right
angles?

13. What is the regular polygon, one of whose exterior angles
s § of a right angle?

14. Can you cover a plane surface with equilateral trmngles with-
out overlapping them or leaving vacant spaces? With quadrilat-
erals? Of what form? With pentagons? Why? With hexagons?
Why? What insect puts the latter fact to practical use? Can you
cover & plane surface thus with regular polygons of more than 6
sides? Why?

15. Is an equilateral hexagon circumscribed about a circle neces-
sarily regular? A heptagon? An octagon? A nonagon?

16. Is an equiangular circumscribed quadrilateral necessarily reg-
ular? A pentagon? A hexagon? A heptagon?

17. Is an equilateral inscribed pentagon necessarily regular? An
octagon? How is it if they are equiangular; are they necessarily
equilateral and regular?
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g Prop. IL
Prorp. IIL
DEr.

Pror. V.
Propr. VL

Prop.

Prop.
Prop.
Prop.

Prop.

A

Prop. XVL

REGULAR. <

PoLYGONS OF MORE THAN 4 SIDES.
N

SYNOPSIS.

%. ; (%nly onelrighf or obtuse.
. 2. Two angles given.
Sum of angles. 3 7y, 3 Acute angles if right angle <X
Cor. 4. One angle if equiangular.
Cor. 1. Converse.
Cor. 2. Equiangular, equil===-€
eral, and converse.
Sides and opp. angles. { Cor. 8. Isosceles, equiangulcmm— 3
and converse.
Sch. These only general rell. ==
tions.
Angle within a triangle.
Exterior angle.

( Prop. IV. Exterior angle.—Cor. Non-adjacent interior.

Sum of angles.
Angles of mscribed.oor o "
. 1. Of a trapezoid.
VIL Angles of. { Cor. 2. Of a rectangle,
V{g gonverse tg las};.
'wo op. sides of a quadrilat’l equal and parallel —
X Oppos?te sides of a quadrilateral equal. mullels-
Cor. 1. Parallels inte ted bet-
XI. Converse to last. Cor. 2. Dhgon:l:ﬂ : pa'::lll,elognm-
Pror. XIIL Bisect.

DIAGONALS. g Prop. XIII. Ofa rhombus.—Cor. Bisect angles.

Pror. XIV. Of a rectangle.—Cor. Converse.

( DEF's.—Salient angle.—Re-entrant.—Convex polygon.—Concave.

Sch. 1. Application.
Seh. 2. Applied to triangles.

Prop. XV. Sum of angles. | g3 3" Angle of equiangular poly-

gon.
Sum of exterior angles.
[ Prop. XVII. Equilateral inscribed, regular.
Prop. XVIIL. Equiangular inscribed % Sch. Fails for
if odd No. of sides. even No.
Pror. XIX. Equiangular circumscribed, regular.
Pror. XX Equilateral circbd. if { Seh. Fails for
odd No. of sides. even No.
Cor. 1. Inscribed.
Cor. 2. Centres.
Prop. XXI. Circf. can be cir- | Def. Angle at cntr.
cumscribed. Cor. 3. Value of an-
gle at centre.
Def. Apothem,

\

L Prop. XXII Side of inscribed hexagon.

Der. Convex Broken Line.

Cor. 1. Sum of two sides of tri-

angle.
Prop. XXIII. Convex broken line < | Cor. 3. Diff. of two sides of tri-

EXERCISES.

than —. angle.
Cor. 8. Lines from point within
triangle.
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SECTION VI,

OF EQUALITY.

277. Equality signifies likeness in every respect.

278. The equality of magnitudes is usually shown by applying
O me to the other, and observing that they coincide.

PROPOSITION I.

279. Theorem.—Two straight lines of the same length ars
eqgual magnitudes.*

DeM.—Let AB and CD be two straight lines of the same length : then are
They equal

For, concelve the extremity C of CD placed at A,
®nd the other extremity somewhere in AB, or in AB A—m— B
Poroduced, as the case may be. Now, the point
~which traces AB passes through all points in the ©C
Qirection of B from A; and hence, if CD is traced Pie. 198.¢
Krom A towards B, it will pass through the same
Yoints as far a8 they mutually extend. The lines therefore coincide, as far as
they both extend ; and, being of the same length, D falls at B, and they coincide
throughout; they are, therefore, equal. Q. E. D.

ILL.—The truth of this theorem is so evident, that

the student may fail to see the point of the demonstra- LT
tion. Let him see if he can say the same things of /
two curved lines AmB, and CxD, which are of the A 7 B
same length.

The substance of the demonstration is as follows: c
A line has two properties, and only two, form and D
magnitude. Straight lines, being of the same form, if Fre. 199.

they are of the same magnitude, are alike in all respects; f.e., they are equal.
Now, a line, as a magnitude, has only one dimension, viz., length. If, there-
fore, two lines have the same length, they have the same magnitude.

* See Preface.
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1. Only one right or obtuse.

2. Two angles given.

3. Acute angles if right angled

. 4. One angle if equiangular.

Cor. 1. Converse.

Cor. 2. Equiangular, equilat-
eral, and converse.

Pror. IL Sides and opp. angles. { Cor. 3. Isoeceles, equiangular,
and converse.

Sch. These only general rela-
tions.

Prop. III. Angle within a triangle.
Der. Exterior angle.

( Prop. IV. Exterior angle.—Cor. Non-adjacent interior.

Prop. V. S8am of angles.
Prop. VL Angles of mscn'bed.c of
or. 1. a trapezoid.
Pror. VIL Angles °f'{ Cor. 2. Of a rectangle.
l;zr. VFXI. %onverse tg Ias:_.
P. 'wo op. sides of a quadrilat’l equal and parallel.
Pror. X Oppouge sides of a quadrilateral equal. [parallels.

Prop. XL Converse to last Cor. 1. Parallels intercepted bet.

Propr. XIL Bisect.
D1agoNALs. ) Prop. XIII. Ofa rhombus.— Cor. Bisect angles.
Prop. XIV. Of a rectangle.—Cor. Converse.

( DEP's.—Salient angle.—Re-entrant.—Convex polygon.—Concave.
Seh. 1. ipplicgtion. .
8ch. 2. Applied to triangles.

Prop. XV. SBum of angles. 1 g5 3 Angle of equiangular poly-

gon.
Prop. XV1. Sum of exterior angles. .
( Prop. XVII. Equilateral inscribed, regular.
Prop. XVIIIL. Equiangular inscribed { Sch. Fails for
if odd No. of sides. | even No.
Pror. XIX. Equiangular circumscribed, rci‘gular.
Pror. XX Equilateral circbd. if { Sch. Falls for
odd No. of sides. even No.
REGULAR. < Cor. 1. Inscribed.
Cor. 2. Centres.
Prop. XXI. Circf. can be cir- | Def. Angle at cntr.
cumscribed. Cor. 3. Value of an-
gle at centre.

Def. Apothem.

\

| Prop. XXII Side of inscribed hexagon.

Der. Convex Broken Line.

Cor. 1. Sum of two sides of tri-
angle.

Prop. XXIII. Convex broken line < | Cor. 3. Diff. of two sides of tri-

than —. angle. i
Cor. 8. Lines from point within
triangle.

EXEROCISES,
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PROPOSITION IV.

282, Theorem.—If two angles have two sides parallel and ex-
tending in the same direction with each other, while the other twe
sides are parallel and extend in opposite directions from each other,
the angles are supplemental.

DEM.—Let ABC and DEF be two angles, c
having BC and ED parallel, and extending
in the same direction from the vertices, D
and AB and EF parallcl, and extending in
opposite directions from the vertices; then are A B
ABC and DEF supplements of each other.

For, produce the two sides not parallel, if E F
necessary, till they meet. Now, BHD is the

supplement of BHE by (131), BHE = the al- b <
ternate interior angle DEF, and BHD = the H
corresponding angle ABC. Therefore, ABC is ‘574
the supplement of DEF. Q. E. D. A 8

[This demonstration is adapted to the upper
cut; let the student adapt it to the lower.]

Fia. 202.

PROPOSITION V.

283. Theorem.—If two angles have
Zheir sides respectively perpendicular to
each other, the angles are either equal or
supplementary.

DeEM.—Let BA be perpendicular to EF or
to E'F’, and BC to ED; then is ABC = DEF.
For, through B draw BO and BN, respectively
parallel to ED and EF; then by the preceding
propositions NBO = DEF, and is the supple-
ment of FFE‘'D, But NBA = OBC, since both
are right angles. Take away OBA from each,
and we have NBO = ABC; and as NBO is the
supplement of F'E’D, ABC is also the supple-
ment of FFE'D. Q. E. D.
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OF TRIANGLES,

PROPOSITION VL.

284. Theorem.—Two triangles which have two sides and the
tncluded angle of one equal to two sides and the included angle of the
other, each to each, are equal.

DEM.—Let ABC and DEF
be two triangles, having

c F
AC = DF, AB = DE, and
angle A = angle D; then
D ] E are the triangles equal.
B A O, B For, place the triangle
5) ABC in the position (), the
C

side AB in its equal DE, and

the angle A adjacent to its

equal angle D. Then re-

Fie. 204. volving ABC upon DB, until

it falls in the plane on the

opposite side of DB, since angle A = angle D, AC will take the direction DF;

and as AC = DF, C will fall at F. Hence BC will fall in EF, and the triangles
will coincide. Therefore the two triangles are equal. Q E. D.

‘We may also make the application of ABC to DEF directly, as in (85). The
method here given is used for the purpose of uniformity in this and the follow-
ing. We may observe that in this, as in the other cases, DB is perpendicular to
FC, and bisects it at O. This fact might easily be shown, and the demonstra-
tion be based upon it.

285. Sca—This proposition signifies that the two triangles are equal tn all
respects, . e., that the two remaining sides are equal, as CB = FE; that angle
C =angle F, angle B =angle E, and that the areas are equal.

PROPOSITION VIL

286. Theorem.—Two triangles which have two angles and the
included side of the one equal to two angles and the tncluded sids of
the other, each to each, are equal.
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Dem.—Let ABC and DEF
be two triungles, having
angle A = angle D, angle
B —angle E, and side AB
= side DE; then are the
triangles equal.

For, place ABC in the A B (3)
position (b), the side AB in
its equal DE, the angle A
adjacenttoits equal angle D, c
and B adjacent to its equal
angle E. Then revolving
ABC upon DB till it falls in the plane on the same side as DFE, since angle A =
angle D, AC will take the direction DF, and C will fall somewhere in DF or
DF produced. Also, since angle B = angle E, BC will take the direction EF,
and C will fall somewhere in EF, or EF produced. Hence, as C falls at the
same time in DF and EF, it falls at their intersection F. Therefore the two
triangles coincide, and are consequently equal. Q. E. D.

»O
om

Fra. 205.

R28%. Cor.—If ane triangle has a side, its opposite angle, and one
adjacent angle, equal to the corresponding parts in another triangle,
each to each, the triangles are equal.

For the third angle in each is the supplement of the sum of the given angles,
and they are consequently equal. Whence the case is included in the pro-
position.

288. Scr.—A triangle may have a side and one adjacent angle equal to a
side and an adja-

. 8"
cent angle in
another, and the C
second adjacent /\
angle of the first - >
equal to the angle A B c

Fia. 208.

opposite the equal
side in the second, and the triangles not be equal. Thus, in the figure, AB =
C'AN,A = A, and B = B’; but the triangles are evidently not equal. [Such
triangles are, however, similar, as will be shown hereafter.]

PROPOSITION VIIL

289, Theorem.—Two triangles which have two sides and an
angle opposite one of these sides, in the one, equal to the corresponding
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parts in the other, are equal, if of these two sides the one opposits the
given angle 18 equal to or greater than the one adjacent.

DEM.—In the triangles ABC and DEF, let AC = DF, CB = FE, A = D, and
CB (= FE) S AC (= DF); then are the triangles equal.
. For, apply AC to its equal
DF, the point A falling at
D and C at F. S8ince A =
D, AB will take the direc-
tion DE. Let fall the per-
pendicular FH upon DE, or
DE produced. Now, CB
being < DF, cannot fall
between it and the perpen-
dicular, but must fall in FD
or beyond both. As there
can be but one line on the
same side of the perpen-
dicular equal to CB, and as
FE = CB, CB must fall in FE. Hence, the two triangles coincide, and are
consequently equal. Q. E. D.

) (o}

A

290. Scu. 1.-If A and D are acute and CB (= FE) = AC (= DF), the tri-
angles are isosceles. If A and D are right or obtuse, CB (=FE) must be greater
than AC (= DF), in order that there may be a triangle, since the right or ohtuse
angle is the greatest angle in a triangle, and the greatest side is opposite the
greatest angle. This impossibility appears also from the demonstration above.

291. Scu. 2.—If A and D are acute, and the side opposite A, ¢.e., CB, is less
than AC, it must be equal to or
greater than the perpendicular Cl
(= FH) in order to have a triangle.
Then, applying AC to DF, and ob-
serving that AB takes the direction
. DE, and that EF, which = CB, being
B D E H E intermediate in length between DF
Fre. 208. and FH, may lie on either side of
FH, we see that ABC may or may
not coincide with DEF, Whether it does or not will depend upon whether
angle C = angle F, or whether AB = DE. This is the AMRIGUOUS CASE in
the solution of triangles, and should receive special attention.

C

aAF

i
!
|
I
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PROPOSITION IX,

292. Theorem.—Two triangles which have the three sides of
the one equal to the three sides of the other, each to each, are equal.

.

Dem.—Let ABC and DEF be two triangles, in which AB = DE, AC = DF,
and BC = EF; then are the )
triangles equal.
For, place the triangle c F
ABC in the position (b), and
the side AB in its equal DE,
so that the other equal sides
shall be adjacent, as AC ad- 2
jacent to DF, and BCtoEF. A B (3)
Draw FC. Now, since DC
= DF, and EC = EF,DB is
perpendicular to FC at its C
middle point (130). Hence, Fia. 209,
revolving ABC upon DB, it
will coincide with DEF when brought into the plane of the latter Therefore
the two triangles are equal. Q. E. D.

om

293. Cor.—In two equal triangles, the equal angles lie opposite
the equal sides. :

294, Sca.—If the triangles compared, as in the
three preceding propositions, have an obtuse angle, and
the two sides first brought together are sides about the
obtuse angle, the figure will take the form in the mar-
gin; but the demonstration will be the same. When
the three sides are the given equal parts, the form of
figure given in the demonstration above can always be

secured by bringing together the two greatest sides. Cc
Fia. 210.

F

PROPOSITION X.

295. Theorem.—If two triangles have two sides of the one
respectively equal to two sides of the other, and the tncluded angles
2enequal, the third sides are unequal, and the greater third side
&elongs to the triangle having the greater included engle.
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c ’ DeM.—Let ACB and DEF be two tri-

F angles having AC = DF, CB = FE, and
C > F; then is AB > DE.

For, placing the side DF in its equal

AC, since angle F < angle C, FE will fall

y S within the angle ACB, as in CE. Then let

/ the triangle ACE = the triangle DFE. Bi-

e sect ECB with CH, and draw HE. The

; B
N E
F triangles HCB and HCE have two sides
and the included angle of the one, respec-
8 tively equal to the corresponding parts of
4 £ the other, whence HE = HB. Now AH +
D

HE > AE; but AH + HE = AH + HB =
AB. Therefore, AB > AE. Q. E.D.

A

296. Cor. — Conversely, If two

Fre. 911, sides of one triangle are respectively

equal to two sides of another, and the

third sides unequal, the angle opposite this third side is the greater
in the triangle which has the greater third side.

Dem.—If AC = DF, CB = FE, and AB > DE, angle C > angle F. For, if
C = F, the triangles would be equal, and AB = DE (284); and, if C were less
than F, AB would be less than DE, by the proposition. But both these conclu-
sions are contrary to the hypothesis. Hence, as C cannot be equal to F, nor
less than F, it must be greater.

PROPOSITION XI.

29%7. Theorem.—Two right angled triangles which have the
hypotenuse and one side of the one equal to the hypotenuse and one
sids of the other, each to eachk, are equal.

DEM.—In the two triangles ABC and DEF, right angled at B and E, let AC
= DF, and BC = EF; then are the triangles equal.

For, place BC in its equal

EF, so that the right angles

(o) F.C
shall be adjacent, the angles
A and D lying on opposite
sides of EF,as in(b). Since
(8) E and B are right angles,
DA is a straight line. Now,
A B D EB A

since equal oblique lines, as
Fia. 212. FD and CA, cut off equal

distances from the foot of

the perpendicular (Z41), DE = BA; and revolving CAB upon FB, the two
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each other. What is the form of the quadrilateral? What the value
of each of the two latter angles ?

6. One of the angles of a parallelogram is § of a right angle. What
are the values of the other angles?

7. The two opposite angles of & quadrilateral are respectively #
and 4 of a right angle. Can a circumference be circumscribed ? Ir
80, do it.

8. Two of the opposite sides of a quadrilateral are parallel, and
each is 15 in length. What is the figure? Do these facts determine
the angles ?

9. Two of the opposite sides of a quadrilateral are 12 each, and the
other two 7 each. What do these facts determine with reference to
the form of the figure ?

10. What is the value of an angle of a regular dodecagon ?

11. What is the sum of the angles of a nonagon? What is the
value of one angle of a regular nonagon? Of one exterior angle ?

12. What is the regular polygon, one of whose angles is 114 right
angles ?

13. What is the regular polygon, one of whose exterior a.ngles
is § of a right angle?

14. Can you cover a plane surface with equilateral triangles with-
out overlapping them or leaving vacant spaces? With quadrilat-
erals? Of what form? With pentagons? Why? With hexagons?
Why? What insect puts the latter fact to practical use? Can you
cover & plane surface thus with regular polygons of more than 6
sides? Why?

15. Is an equilateral hexagon circumscribed about a circle neces-
sarily regular? A heptagon? An octagon? A nonagon ?

16. Is an equiangular circumscribed quadrilateral necessarily reg-
ular? A pentagon? A hexagon? A heptagon?

17. Is an equilateral inscribed pentagon necessarily regular ? An
octagon ? How is it if they are equiangular; are they necessarily
equilateral and regular ?
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ANGLES AND SIDES OF POLYGONS.

TRIANGLES.

DEr.

ProP.

ELEMENTARY PLANE GEOMETRY.

SYNOPSIS.

Cor. 1. Only one right or obtuse.

( Pror. I Sum ofangles. { &°7- 2. Two angles given.

Cor. 8. Acute angles if right angled
Cor. 4. One angle if equiangular.
Cor. 1. Converse,
Cor. 2. Equiangular, equilat-
eral, and converse.
IL Bides and opp. angles. { Cor. 8. Isosceles, equiangular,
and converse.
Sch. These only general rela-
tions,

Prop. III. Angle within a triangle.

Exterior angle.

l Prop. IV. Exterior angle.—Cor. Non-adjacent interior.
Prop.

V. Sum of angles.

Prop. VI. Angles of inscribed.

Prop. VIL Angles ot'.{ gx: ;: 8}‘ . g’éﬁ:}’iﬂ:

Prop. VIII. Converse to last.
Prop. IX. Two op. sides of a quadrilat’l equal and parallel.
Pror. X Opposite sides of a quadrilateral equal. |parallels,

Prop. XL Converse to last.{ Cor. 1. Parallels intercepted bet.

Cor. 2. Diagonal of & parallelogram.
Pror. XII Bisect.

DI1AGONALS. g Prop. XIII. Ofa rhombus.—Cor. Bisect angles.

PoLYGONS OF MORE THAN 4 SIDES.
N

\

Pror. XIV. Of a rectangle.—Cor. Converse.

( DEF's.—Salient angle.—Re-entrant.—Convex polygon.—Concave.

8ch. 1. Application.
Sch. 2. Applied to triangles,

Prop. XV. Bum of angles. { g’ g Angle of equiangular poly-

gon.

( Prop. XVII. Equilateral inscribed, regular.

Prop. XVIII. Equiangular inscribed { Sch. Fails for
if odd No. of sides. { even No.

Prop. XIX. Eqniangular circumscribed, regular.

Prop. XX Equilateral circbd. if { 8ch. Fails for
odd No. of sides. even No.

Prop. XVI. Sum of exterior angles.

REGULAR. Cor. 1. Inscribed.

Cor. 2. Centres.
Propr. XXI. Circf. can be cir- | Def. Angle at cntr.
cumscribed. Cor. 8. Value of an-
gle at centre.
Def. Apothem.
L Propr. XXII Side of inscribed hexagon,

Der. Convex Broken Line.

Prop. XX

Cor. 1. Sum o‘f two sides of tri-
angle.
1II. Convex broken line < | Cor. 3. Diff. of two sides of tri-

than —. angle.
o Cor. 8. Linesgﬁ'om point within
triangle.

EXERCISES.
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SECTION VI,

OF EQUALITY.

277. Equality signifies likeness in every respect.

278. The equality of magnitudes is usually shown by applying
one to the other, and observing that they coincide.

PROPOSITION L.

279. Theorem.—Two straight lines of the same length ars
equal magnitudes.*

Dem.—Let AB and CD be two straight lines of the same length: then are
they equal.

For, conceive the extremity C of CD placed at A,
and the other extremity somewhere in AB, or in AB A———8 B
Produced, as the case may be. Now, the point
which traces AB passes through all points in the c
direction of B from A; and hence, if CD is traced Fie. 198.¢
from A towards B, it will pass through the same
Points as far as they mutually extend. The lines therefore coincide, as far as
they both extend ; and, being of the same length, D falls at B, and they coincide
““’Oughout; they are, therefore, equal. Q. E. D.

ILL.—The truth of this theorem is so evident, that —
the student may fail to see the point of the demonstra- PR
tion, Let him see if he can say the same things of / /\
tWo curved lines AmB, and CnD, which are of the A 7. B

Same length.
The substance of the demonstration is as follows: c 5

line has two properties, and only two, form and
Magnituds. Straight lines, being of the same form, if Fia. 199.
they gre of the same magnitude, are alike in all respects; ¢.e., they are equal.
N“W, a line, as & magnitude, has only one dimension, viz., length. If, there-
f'“'e, two lines have the same length, they have the same magnitude.

* See Preface.
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PROPOSITION IL

280. Theorem.—Two circles whoss radii are of the same length
are equal ; i. €., the circumferences are equal, and
the circles equal,

B DEM.—Let there be two circles whose radii AB and

CD are of the same length ; then are the circles equal.
For, place the second circle on the first, with the centre
C at A, and CD jn AB. As CD = AB, D will fall at B.
Now, every point in the plane at a distance AB from A is in
the circumference of circle A. But every point at a distance
c D CD from the common centre is in the circamference of
circle C. Hence, the two figures coincide, and the circles

are alike in all respects, . e., are equal. Q. E. D.
F1e. 200,

OF ANGLES.

PROPOSITION IIL

281. Theorem.—Two angles whose sides are parallel, two and
two, and lie 1n the same or in opposite directions from their vertices,
are equal.

DeM.—1st. In (@) or (a') let B a.nd E have BA and ED paralle], and extending

b) Dr in the same direction from the
(a,) A ( ., B’ vertices, and also BC and EF;
- .Y then are B and E equal. For,

A produce (if necessary) either two

sides which are not parallel, till
they intersect, as at H; then are
the corresponding angles DHC and
DEF, and DHC and ABC equal
(152). Hence, ABC = DEF.
2nd. In (b)and (') let B’ and E’
have B’A’ parallel with E’F/, but
extending in an opposite direction
from its vertex ; and in like manner
Fie. 201. B’C’ parallel with, but extending in
an opposite direction from E'D’; then are B’ and E’ equal. For, produce (if neces-
sary) two of the sides which are not parallel till they intersect, as at H’; then
D'H'B’ = the corresponding angle D’E’F’, and also = the alternate interior
angle A’B'C’; whence A'B’'C’ = D’E'F’. Q. E. D.
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GFED. Whence G’C’ = GC, G’'D’ = CD, and angle G’C’'D’ = GCD. Thus the
case is reduced to that of two triangles having two sides and an angle oppo-
site one of them mutually equal, and is, therefore, ambiguous. The polygon
(¢) may have the part corresponding to G’F'E’'D’ situated as GFED, or as
CF,EiD:. In the former case the polygons are equal, in the latter not.

307. Cor.—Two quadrilaterals having three sides and the corre-
sponding angles included by these sides equal, are equal.
"This falls under the 1st case.

308. ScH—If the three unknown or excepted parts are all sides, the poly-
Zons are not necessarily equal, as will appear by an inspection of the figure. The

Fia. 219.

uanmarked sides being the excepted ones, the polygons may be those included by
the continuous lines, or those included in part by the broken lines, all the parts
eing equal in each two, except the three unknown ones.

PROPOSITION XVIIL

309. Theorem.—Two polygons of the same number of sides,
having two adjacent sides and the diagonals drawn from the included
angle, in the one, respectively equal to the corresponding parts in the
other, and their corresponding included angles equal, are equal
figures.

DEM.—The demonstration is based upon (284). Let the student draw the
figures, and make the applications.

PROPOSITION XIX.

310. Theorem.—Two polygons of the same number of sides,
having all the parts (sides and angles) of the one respectively equal
to the corresponding parts of the other, except two parts, are equal, un-
less the excepted parts are parallel sides.
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OF TRIANGLES.,

PROPOSITION VI

284. Theorem.—Two triangles whick have two sides and the
tncluded angle of one equal to two sides and the included angle of the
other, each to each, are equal.

DeM.—Let ABC and DEF
be two triangles, having

c F
AC = DF, AB = DE, and
angle A = angle D; then
D ] are the triangles equal.
B A (0] For, place the triangle
(5) ABC in the position (b), the
C

om

side AB in its equal DE, and

the angle A adjacent to its

equal angle D. Then re-

Fie. 204. volving ABC upon DB, until

it falls in the plane on the

opposite side of DB, since angle A = angle D, AC will take the direction DF;

and as AC = DF, C will fall at F. Hence BC will fall in EF, and the triangles
will coincide. Therefore the two triangles are equal. Q E. D.

‘We may also make the application of ABC to DEF directly, as in (85). The
method here given is used for the purpose of uniformity in this and the follow-
ing. We may observe that in this, as in the other cases, DB is perpendicular to
FC, and bisects it at O. This fact might easily be shown, and the demonstra-
tion be based upon it.

285. Sca.—This proposition signifies that the two triangles are equal ¢n all
respects, 1. e., that the two remaining sides are equal, as CB = FE; that angle
C =angle F, angle B =angle E, and that the areas are equal.

PROPOSITION VIL

286. Theorem.—Two triangles which have two angles and the
included side of the one equal to two angles and the tncluded side of
the other, each to each, are equal.
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Dem.—Let ABC and DEF
be two triungles, having c F,
angle A = angle D, angle
B = angle E, and side AB
= side DE; then are the
triangles equal.

For, place ABC in the A B (3)
position (b), the side AB in
its equal DE, the angle A
adjacenttoits equal angle D, Pes
and B adjacent to its equal
angle E. Then revolving Fia. 6.
ABC upon DB till it falls in the plane on the same side as DFE, since angle A =
angle D, AC will take the direction DF, and C will fall somewhere in DF or
DFf produced. Also, since angle B = angle E, BC will take the direction EF,
and C will fall somewhere in EF, or EF produced. Hence, as C falls at the
same time in DF and EF, it falls at their intersection F. Therefore the two
triangles coincide, and are consequently equal. Q. E. D.

PO
om

287. Cor.—If ane triangle has a side, its opposite angle, and one
adjacent angle, equal to the corresponding parts in another triangle,
each to each, the triangles are equal.

For the third angle in each is the supplement of the sum of the given angles,
and they are consequently equal. Whence the case is included in the pro-
position.

288, Scm.—A triangle may have a side and one adjacent angle equal to a
side and an adja-

(4
cent angle in B
another, and the (o}
second adjacent /\
angle of the first ’
equal to the angle A B cr A
Fre. 208.

opposite the equal

side in the second, and the triangles not be equal. Thus, in the figure, AB =
C'A’,A = A, and B = B’; but the triangles are evidently not equal. [Such
triangles are, however, similar, as will be shown hereafter.]

PROPOSITION VIIL

289, Theorem.—Two triangles which have two sides and an
angle opposite one of these sides, in the one, equal to the corresponding
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one of the other sides 7. The same with one acute angle § of a
right angle, and a side about the right angle 12. Will there be any
difference in the shape of the triangles if one is constructed with the
given angle adjacent to the given side, and the other with it oppo-
site? Will there be any difference in the size ?

12. Construct a right angled triangle having its hypotenuse 20,
and one acute angle § of a right angle.

13. Construct a quadrilateral three of whose sides are 20, 12, and _I&
15, and the angle included between 20 and the unknown side § of 8 ===
right angle, and that between 15 and the unknown side } a right B_

angle.

Sua’s.—Make A = § of a right angle,and 4 = 20. From D as a centre, with _s—%h
a radius 12, strike the arc on. Atany —~<g&y
point on side @, make an angle B’ = ——
4 aright angle. Take B'm = 15, and B
draw Cm parallel to AB’. From the ==e
intersection C draw CB parallel to «—m0
mB’. Draw CD. Then is ABCD the se=m>e
quadrilateral required.
Queries.—If d + ¢ is less than the =28
Fro. 223 perpendicular from D upon AB, then s
i what? Ifequal to the perpendicular, =
then what? Is it necessary to consider angle B in answering the two pre- —=

ceding queries?

14. Construct a parallelogram whose two adjacent sides are 6 and 31
8, and whose included angle equals 1} right angles.

15. Construct a heptagon whose sides in order are ¢ = 4,5 = 5,
c=5,d=26,¢e =6,f=3,g =4; and the angle included between
a and b, 1} right angles; between & and ¢, 14; cand d, 1}; d and
¢ 1%.

Sua’s.—See Fig. 187. Proceed in order, laying off the parts as given, from A
to F. Draw AF. From F as a centre, with a radius f = 8, strike an arc, and also
from A, with a radius g = 4. The intersection of these arcs will determine G.

o h

Queries.—What is the limit of the sum of the possible values of the given
angles? What the limit of the sum of the sides included between the unknown

anglos ?
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SYNOPSIS,

r What? How shown?
Prop. 1. Of straight lines,
Prop, IL. Of circles.

g ( Prop. ITL. Sides parallel. Direction same or opposite.
Prop. IV. ¢ ‘“  one same, other opposite.
Prop. V. ¢ perpendicular.

<]

3

[ Prop. VI. Two sides and included angle. { Sci. All parts equal.

Prop. VII. Two angles and Cor. Bide, one adjacent and one oppo-

: : site angle equal.
included side. } o Exception,  ©

Prop. VIII. Two sides and angle { Sch. 1. When isosceles.
opposite orbc:).r E lSoh, il% ‘When ambiguous.

. . Equal angles opposite equal sides.
 PRoP. I; "ll":ree sides. Scli. (‘,as? (:if eggtuse angle. l“lorm of Fig.
Prop. o sides equal. inclu angles un-

equal. . % Cor, Converse.

TRIANGLES.

'

B g Prop. XI. Hypotenuse and one side.

o 5 1 Prop. XII. Hypotenuse and one acute angle.

af: Prop. XIII. Side and one acute angle.

Prop. XIV. Three sides and non-included angles equal.

{ Prop. XV. Two parallelograms having two s Cor. Rectangles of

L
Prob. In a triangle, given two sides and included angle.
Prob. ¢ ¢ les ¢ side.

ExERCISES. { Prob. * ¢ ¢ gides and angle opposite one.

.

ERALS,

QUADRILAT

Prop. XVI. Three angles excepted.{ Cor. Quadrilaterals.

Propr. XVIL 'I‘w.o angles and one %;’:, lc.zl;rag:ﬂz?:;a s.ous case.
side excepted. Sch. 2. Three sides excepted.
Prop. XVIIL. Two sides and included diagonals.

Propr. XIX. Any two parts excepted.

PoOLYGONS OF MORE
THAN 4 SIDES

sides and the included a.nglesl same base
Prob. ‘“ ¢ three sides.

equal. and altitude.
L l_Prob To inscribe a circle in & triangle.
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SECTION IX.

OF EQUIVALENCY AND AREA.

311. Equivalent Figures are such as are equal in magni-
tude.

PROPOSITION L

312. Theorem.— Parallelograms having equal bases and equal
altitudes are equivalent.

DEm.—Let ABCD and EFCH be two parallelograms having equal bases, BC
and FG, and equal altitudes ; then are they equivalent.
For, place FC in its equal

d r
A E R ';H & H BC; and, since the altitudes
are equal, the upper base EH
/. ! will fall in AD or AD pro-
VA duced, as E'H. Now, the
B [¢3 F G

two triangles AE’B and DH'C

Fre. 223.¢ are equal, because the three

sides of the one are respectively equal to the three sides of the other, Thus AB

= DC, being opposite sides of the same parallelogram. For a like reason, E'B

= HC. Also, E'H’ = BC = AD. From AH’ taking E’H’, AE’ remains, and

taking AD, DH’ remains. Therefore AE' = DH’. These triangles being equal,

the quadrilateral ABCH’ — the triangle AE'B = ABCH’ — DH’C. But ABCH’

— AE’'B = E’'BCH’ = EFGH; and ABCH’ — DH’C = ABCD. Hence, ABCD =
EFCH. Q E.D.

313. Cor—Any parallelogram is equivalent to a rectangle having
the same base and altitude.

PROPOSITION II.

314. Theorem.—A triangle is equivalent to ome-half of any
parallelogram having an equal base and an equal altitude with the
Zreangle.
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DEuM.—Let ABC be a triangle. Through C draw CD parallel to AB; and
through A draw AD parallel to BC. Then is
ABCD a parallelogram, of which ABC is one-
half (243). Now,as any other parallelogram
having an equal base and altitude with ABCD
is equivalent to ABCD (312), ABC is equiva-
l1ent to one-half of any parallelogram having

|an equal base and altitude with ABC. Q.
X. D. . Fie. 324,

315. Cor. 1.—A4 iriangle i3 equivalent to one-half of a rectangle
Ziaving an equal base and an equal altitude with the triangle.

316. Cor. 2.—Triangles of equal bases and equal altitudes are
equivalent, for they are halves of equivalent parallelograms.

PROPOSITION IIL

317. Theorem.—The square described on a line 13 equivalent to
Jour times the square described on half the line, nine tvmes the square
described on one-third the line, sixteen times the square on one-fourth
the line, ete.

DEM.—Let AB be any line. Upon it describe the square ABCD. Bisect AB,

as at d, and AD, as at a. Draw de parallel to AD, and ab parallel to AB. Now,
the four quadrilaterals thus formed

are parallelograms by construction, o

hence their opposite sides and angles - 97
are equal; and as A, B, C, and D are 4 L4

right angles, and Az = Ad = dB = 54
B = etc., the four figures 1, 2, 8, 4, 17 2 2

are equal squares. Hence Adoa = % o

ABCD. In like manner it can be

shown that the nine figures into which Fro. 225.

the square on A’B’ is divided by draw-

ing through the points of trisection of the sides, lines parallel to the other sides,
are equal squares. Hence A0/, the square on } of A'B’,is § of the square
A'B’C’'D’. The same process of reasoning can be extended at pleasure, show-
ing that the square on % a line is v the square of the whole, etc.

PROPOSITION IV,

318. Theorem.—A trapezoid is equivalent to two triangles
having for their bases the upper and lower bases of the trapezoid, and
Jor their common altitude the altitude of the tropexoid.
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DeM.—By constructing: any trapezoid, and drawing either diagonal, the
student can show the truth of this theorem.

PROPOSITION V.
319. Prob.—To reduce any polygon to an equivalent triangle.

SoLuTioN.—Let ABCDEF be a polygon which it is proposed to reduce to an
equivalent triangle. Produce any side, as BC, indefinitely. Draw the diagonal
EC and DH parallel to it

F Draw EH. Now, consider the

triangle CDE as cut off from
H the polygon and replaced by
/ CHE. The magnitude of the
{ polygon will not be changed,
: ! - since CDE and CHE have the
] d same base CE, and the same
o Y altitude, as their vertices lie in

H - DH parallel to EC. From the

Fia. 226. polygon thus reduced we cut

the triangle FHE, and replace

it by its equivalent FHI, by drawing the diagonal FH, and the parallel El. In
like manner, by drawing FB and the parallel AG, we can replace FBA by its
equivalent FGB. Hence, GFl is equivalent to ABCDEF. It is evident that a

similar process would reduce a polygon of any number of sides to an equiva-
lent triangle.

PROPOSITION VL

320. Theorem.—The area of a rectangle is equal to the product
of its base and altitude.

DeM.—Let ABCD be a rectangle, then is its area equal to the base AB multi-
plied by the altitude AC.

If the sides AB and AC are commensurable, take
some unit of length, as E, which is contained a whole
number of times in each, as five times in AC, and
eight times in AB, and apply it to the lines, dividing

L, them respectively into five and eight equal parts.

i From the several points of diwsion draw lines through

Fle. 227, the rectangle perpendicular to its sides. The rect-

angle will be divided into small parallelograms,

which are all equal squares, as the angles are all right angles, and the sides all

bbb bDRBO D A"
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equal to each other. Each square is a unit of surface, and the area of the rect-
angle is expressed by the number of these squares, which is evidently equal to
the number in the row on AB, multiplied by the number of such rows, or the
xxumber of linear units in AB multiplied by the number in AD.

If the two sides of the rectangle are not commmensurable, take some very
small unit of length which will divide one of the sides, as AC, and divide the
wxectangle into squares as before; the number of these squares will be the
ameasure of the rectangle, except a small part along one side, not covered by the
squares. By taking a still smaller unit, the part left unmeasured by the squares
~wvill be still less, and by diminishing the unit of length E, we can wmake the
yoart unmeasured as small as we choose. It may, therefore, be made infinitely

small by regarding the unit of measure as infinitesimal, and consequently is to
Toe neglected.* Hence, in any case, the area of a rectangle is equal to the pro-
duct of its base into its qltitude. Q. E.D.

321, Cor. 1.—The area of a square i3 equal to the second power
of one of its sides, as in this case the base and altitude are equal.

322. Cor. 2—The area of any parallelogram is equal to the pro-
duct of its base into its altitude; for any parallelogram is equivalent
to a rectangle of the same base and altitude (313).

323. CoRr. 3.—The area of a triangle 8 equal to one-half the pro-
duct of its base and altitude ; for a triangle is one-half of a parallelo-
gram of the same base and altitude (3 14).

324. Coxr. 4.—Parallelograms or trianglest of equal bases are to
each other as their altitudes ; of equal altitudes, as their bases; and

in general they are to each other as the products of their bases by
their altitudes.

PROPOSITION VIL

328, Theorem.—The area of a trapezoid 13 equal to the product
of 1ts altitude into one-half the sum of its parallel sides, or, what s
the same thing, the product of its altitude and a line joining the
middle points of its inclined sides.

* This principle may be thus stated: An infinitesimal is a quantity conceived, and to
&y treated, as less than any assignable quantity; hence, as added to or subtracted from finite

Quantities, it has no value. Thus, suppose %: = @, m, n, and a being finite quantities. Let¢

mte m mzte
H t
Xepresent an infinitesimal ; then ram il o' or - Ie is to be considered as still equal to

wm, for to consider it to differ from a by any amount we might name, would be to assign somse
“walue to ¢.

+ By this is meant the areas of the figures,
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tothe unknown angles. Then
the polygon G'F'E'D’ can be
applied in the ordinary way
to GFED, s’ being placed in
J,ete. So also G'A’B'C’ can
be applied to GABC, begin-
ning with g’ in its equal g.
Hence, angle F'G'D’' =FGD,
ANG/C' =AGC; and, adding,
Fi6. 216. F'G'D' + AG'C' = FGD +
AGC. BSubtracting these
equals from G’ = G, we have C'G'D’ = CGD. Whence the triangles C'G’D’ and
CGD have two sides and their included angle equal in each, and are equal;
therefore the polygons are equal in all their parts.

E_ F 306. Sca.—When the unknown
AN ) angles are both separated from the
TN unknown side, the polygons may or

D/ / \‘ \.\ G may not be equal—the case is am-

biguous. Thus, if C and E are the
unknown angles and AH the wun-
known side, the polygons ABCDEFG,
and A'B'C'D'EFG {fulfill the condi-
tions, but are not equal. By draw-
ing CE, CA, and EH, the case is re-
A AN H duced to that of two quadrilaterals
having all the parts equal, each to
each, except two angles and their
non-adjacent side ; in which case the quadrilaterals are not necessarily equal.
So, also, when one of the unknown angles is adjacent to the unknown
side and the other separated, the polygons may or may not be equal. Thus, let

(A

Fre. 217,

Fia. 218.

the unknown parts be D, ¢, G,and D/, ¢/, G. From the separated angle draw the
diagonals to the extremities of the unknown side, as GC, GD (or GD»), and G'C’,
C'D’. In the usnal way G'A’B'C’ can be applied to GABC, and C’F’E'D’ to

Qﬁﬂl\”lmldn;
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CFED. Whence G’'C’ = GC, C’'D’ = CD, and angle G’'C’'D’ = GCD. Thus the
case is reduced to that of two triangles having two sides and an angle oppo-
sitt one of them mutually equal, and is, therefore, ambiguous. The polygon
(¢) may have the part corresponding to G'F'E’'D’ situated as GFED, or as
CF,EiD:. In the former case the polygons are equal, in the latter not.

307. Cor.—Two quadrilaterals having three stdes and the corre-
sponding angles included by these sides equal, are equal.
“This falls under the 1st case.

308, ScE.—If the three unknown or excepted parts are all sides, the poly-
gons are not necessarily equal, as will appear by an inspection of the figure. The

Fie. 219.

unmarked sides being the excepted ones, the polygons may be those included by
the continuous lines, or those included in part by the broken lines, all the parts
being‘equal in each two, except the three unknown ones.

PROPOSITION XVIIL

309. Theorem.—Two polygons of the same number of sides,
having two adjacent sides and the diagonals drawn from the included
angle, in the one, respectively equal to the corresponding parts in the

%Gr, and their corresponding included angles equal, are equal
ures,

Drm.—The demonstration is based upon (284). Let the student draw the
ﬁsllres, and make the applications.

PROPOSITION XIX.
310. Theorem.—Two polygons of the same number of sides,
having all the parts (sides and angles) of the one regpectively equol

t the corresponding parts of the other, except two parts, are equal,wn-
4ss the excepted parts are parallel sides.
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Dem.—The demonstration can be supplied by the pupil, as it is similar to the
several preceding. The cases will be, 1st, When two angles are excepted,
(a) they being consecutive, (b) they not being consecutive ;—2d, An angle and a
side, (@) consecutive, (b) not consecutive ;—3d, Two sides, (¢) consecutive, () not
consecutive.

EXERCISES.

1 Pro‘b.—Ham'ng two sides and their included angle given, te
construct a triangle.

Sua’s.—The student should draw two lines on the blackboard, and a detached
angle, as the given parts. Then, making an angle equal to the given angle
(200), he should lay off the given sides from the vertex on the sides of the
angle, and join their extremities. The triangle thus formed is the one required,
for any other triangle formed with these two sides and this angle will be just
like this by (284).

2. Prob.—Having two angles and their included side given, to
construct a triangle.

3. Prob.— Having the three sides of a triangle given, to construct
the triangle.

1 SoLuTioN.—Let a, b, and ¢, be the given
A sides. Draw an indefinite line CX, and on

it take CB = a. From C as a centre with

3 é b as a radius, describe an arc as near as can
@ o c c be discerned where the angle A will fall.
From B, with a radius ¢, describe an arc

c z B8 x intersecting the former. Then is ABC the
triangle required, since any other triangle
Fie. 220. having the same sides would be equal to

ABC (292).
4. Prob.—To inscribe a circle in a given triangle.

SoruTion.—For the method of doing it see PART I (79). To prove the

method correct, we observe that the triangles

c ODB and OBE have OB common, and are

mutually equiangular ; hence they are equal,

and OD = OE. In like manner triungle

OEC = OFC, and OE = OF. [Triangle OFA

= ODA; but we do not need the fact in the

demonstration.] Since OD = OE = OF, the

circumference struck from O as a centre with

a radius OD, passes through E and F. More-

over, since each side of the wriangle is per-

pendicular to a radius at its extremity, it is tangent to the circle (272); and
the circle is inscribed.

1]

.o khh-
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5. Prob.—Having two sides and an angle opposite one of them
G Zwen, to construct the triangle.

SoLuTION.—18t. When the given angle is right or obtuse, the side opposite
Txx st be greater than the side adjacent, as the greatest side is opposite the
& X eatest angle (224), and the greatest angle in such a triangle is tu- right or

©btuse angle. In this case let m and o be the given sides, and O the angle oppo-
site 0. Draw an indefinite line O’X, construct O’ equal to O, and take O'N’
equal to m. From N’ as a centre, with a radius equal to O, describe an arc cut-
ting O’X, as at M. Draw N’'M’. Then is N'M’O’ the triangle required, since
all triangles having their corresponding parts equal to m’, o', and O’ are equal.

2d. When the given angle is acute, as A, there will be no solution if the
&iven side, a, opposite A, is less than the perpendicular; one solution if a = p,
or if a > than both p and b, and two solutions if a > p, and less than b. This
~will appear from the construction, which is the same as in Case 1st.

6. If a perpendicular be let fall from the £
right angle C of the triangle ACD, upon the
hypotenuse, a8 €D, show from (222) that
the three triangles in the figure are mutnally
equiangular.

~

A D B
Fre. 222.

7. Given the sides of a triangle, as 15, 8, and 5, to construct the
triangle.

8. Given two sides of a triangle @ = 20, 4 = 8, and the angle B
opposite the side & equal } of a right angle,* to construgt the triangle.

9. Same a8 in the 8th, except 4 = 12. Same, except that & = 25.

10. Construct a triangle with angle A = $ of a right angle, angle
B = } of a right angle, and side @ opposite angle A, 15.

11. Construct a right angled triangle whose hypotenuse is 16, and

* To construct thie angle, bieect an angle of an equilateral triangle.
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one of the other sides 7. The same with one acute angle § of a
right angle, and a side about the right angle 12. Will there be any
difference in the shape of the triangles if one is constructed with the
given angle adjacent to the given side, and the other with it oppo-
site? Will there be any difference in the size

12. Construct a right angled triangle having its hypotenuse 20,

and one acute angle } of a right angle.

13. Construct a quadrilateral three of whose sides are 20, 12, and
15, and the angle included between 20 and the unknown side § of a
right angle, and that between 15 and the unknown side § a right
angle.

Sua’s.—Make A = § of a right angle,and 4 = 20. From D as a centre, with
a radius 12, strike the arc on. At any
point on side ¢, make an angle B’ =
4 a right angle. Take B'm = 15, and
draw Cm parallel to AB’. From the
intersection C draw CB parallel to
mB’. Draw CD. Then is ABCD the
quadrilateral required.

Queries.—If d + ¢ is less than the
perpendicular from D upon AB, then
what? If equal to the perpendicular,
then what? Is it necessary to consider angle B in answering the two pre-
ceding queries?

Fia. 228,

14. Construct a parallelogram whose two adjacent sides are 6 and
8, and whose included angle equals 1§ right angles.

15. Construct a heptagon whose sides in order are ¢ = 4, 5 = 5,
c=25d=26,¢e=6,f=38,g = 4; and the angle included between
a and b, 1} right angles; between & and ¢, 14; cand 4, 1}; d and
e 1. :

Sua’s.—See Fig. 187. Proceed in order, laying off the parts as given, from A
to F. Draw AF. From F as a centre, with a radius f = 3, strike an arc, and also
from A, with a radius g = 4. The intersection of these arcs will determine G.

Queries.—What is the limit of the sum of the possible values 'of the given
angles? What the limit of the sum of the sides included between the unknown

angles?

a

Gh

\b& Qggﬂﬂdﬁ

L
¢ .
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SYNOPSIS,

r What? How shown?
Prop. I. Of straight lines.
Prop. II. Of circles.

@ ( Prop. ITL. Bides parallel. Direction same or opposite.
Prop. IV. “ ¢ one same, other opposite.
Prop. V. ¢ perpendicular.

<]

3

[ ProP. VI. Two sides and included angle. { Sch. All parts equal.

Prop. VIL. Two angles and { 007 Side, one adjacent and one oppo-
included side site angle equal.
* ( Sckh. Exception.

Prop. VIII. Two sides and angle { Sech. 1. When isosceles.
opposite onc%r Bq lSoh. ? ‘When ambiguous.
. . Equal angles opposite equal sides.
{1 Prop. 1X. Three sides. { Sch. Case of ogtuse gngle. ](siorm of Fig.
PROP.‘ X Tv;guasli'des equal. included angles un- } Cor. Converse.

TRIANGLES.

B g Prop. XI. Hypotenuse and one side,
& 5 { Prop. XII. Hypotenuse and one acute angle.
aé Prop. XIII. Side and one acute angle.

.

Prop. XIV. Three sides and non-included angles equal.

Prop. XV. Two parallelograms having two ( Cor. Rectangles of
sides and the included angles same base
equal. l and altitude,

ERALS.

QUADRILAT

Cor. Quadrilaterals.
Sch. 2. Three sides excepted.

Propr. XVIII. Two sides and included diagonals.
Propr. XIX. Any two parts excepted.

side excepted.

Propr. XVI. Three angles excepted. { Cor. Quadrilaterals.
Prop. XVII. Two angles and one% Sh. 1, The ambiguous case.

POLYGONS OF MORE
THAN 4 SIDES.

Prob. In a triangle, given two sides and included angle.
M 13 “ ‘“

X angles « side.
ExERCISES. { Prob. ** ¢ ¢ si(fes and angle opposite one.
Prob, ‘¢ ‘¢ three sides.
L | Prob. To inscribe a circle in a triangle.
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SECTION IX.

OF EQUIVALENCY AND AREA.

311. Equivalent Figures are such as are equal in magni-
tude.

PROPOSITION L

312. Theorem.— Parallelograms having equal bases and equal
altitudes are equivalent.

DEM.—Let ABCD and EFCH be two parallelograms having equal bases, BC
and FC, and equal altitudes; then are they equivalent.
For, place FGC in its equal

d ’
A E R ,-H & H BC; and, since the altitudes
are equal, the upper base EH
i / will fall in AD or AD pro-
; / duced, as E’'H’. Now, the
B [¢3 F G

two triangles AE’'B and DH'C

Fre. 223.¢ are equal, because the three

sides of the one are respectively equal to the three sides of the other, Thus AB

= DC, being opposite sides of the same parallelogram. For a like reason, E'B

= HC. Also, E'H’ = BC = AD. From AH’ taking E’H’, AE’ remains, and

taking AD, DH’ remains. Therefore AE’ = DH’. These triangles being equal,

the quadrilateral ABCH’ — the triangle AE’'B = ABCH’ — DH’C. But ABCH’

— AE’B = E'BCH’ = EFGH; and ABCH’ — DH’C = ABCD. Hence, ABCD =
EFCH., Q E. D.

313. Cor.—Any parallelogram is equivalent to a rectangle having
the same base and altitude.

PROPOSITION II.

314, Theorem.—A triangle is equivalent to one-half of any
parallelogram having an equal base and an equal altilude with the
Zraangle.
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Dex.—Let ABC be a triangle. Through C draw CD parallel to AB; and
through A draw AD parallel to BC. Then is
A\ BCD a parallelogram, of which ABC is one-
Ihalf (243). Now,as any other parallelogram
Inaving an equal base and altitude with ABCD
is equivalent to ABCD (312), ABC is equiva-
1ent to one-half of any parallelogram having
&an equal base and altitude with ABC. q.
. D. . Fie. 34,

315. Cor. 1.—A4 triangle 13 equivalent to one-half of a rectangle
Ziaving an equal base and an equal altitude with the triangle.

316. Cor. 2.—Triangles of equal bases and equal altitudes are
egquivalent, for they are halves of equivalent parallelograms.

PROPOSITION IIIL

317. Theorem.—The square described on a line is equivalent to
Jour times the square described on half the line, nine times the square
described on one-third the line, sixteen times the square on one-fourth
the line, ete.

DEeM.—Let AB be any line. Upon it describe the square ABCD. Bisect AB,
as at d, and AD, as at a. Draw dc parallel to AD, and ab parallel to AB. Now,
the four quadrilaterals thus formed
are parallelograms by construction,
hence their opposite sides and angles
are equal ; and as A, B, C, and D are
right angles, and Aa = Ad = dB =
B = etc., the four figures 1, 2, 8, 4,
are equal squares. Hence Adoa = %
ABCD. In like manner it can be
shown that the nine figures into which
the square on A’B’ is divided by draw-
ing through the points of trisection of the sides, lines parallel to the other sides,
are equal squares. Hence A’0’, the square on § of A’'B’,is § of the square
A’B’C’'D’. The same process of reasoning can be extended at pleasure, show-
ing that the square on £ a line is v the square of the whole, etc.

PROPOSITION IV,

318. Theorem.—A trapezoid is equivalent to two triangles
Aaving for their bases the upper and lower bases of the trapezoid, and
Jor their common altitude the altitude of the trapexoid.
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DeM.—By constructing- any trapezoid, and drawing either diagonal, the
student can show. the truth of this theorem.

PROPOSITION V.
319. Prob.—To reduce any polygon to an equivalent triangle.

SoLuTioN.—Let ABCDEF be a polygon which it is proposed to reduce to an

equivalent triangle. Produce any side, as BC, indefinitely. Draw the diagonal

EC and DH parallel to it

F Draw EH. Now, consider the

triangle CDE as cut off from

/ ’ the polygon and replaced by

/ CHE. The magnitude of the

/ polygon will not be changed,

' since CDE and CHE have the

same base CE, and the same

B altitude, as their vertices lie in

H DH parallel to EC. From the

Fia. 226. polygon thus reduced we cut

the triangle FHE, and replace

it by its equivalent FHI, by drawing the diagonal FH, and the parallel El. In

like manner, by drawing FB and the parallel AG, we can replace FBA by its

equivalent FGB. Hence, GFI is equivalent to ABCDEF. It is evident that a

similar process would reduce a polygon of any number of sides to an equiva-
lent triangle.

AREA.

PROPOSITION VL
320. Theorem.—The area of a rectangle i equal to the product
of its base and altitude.

DEeM.—Let ABCD be a rectangle, then is its area equal to the base AB multi-

plied by the altitude AC.
If the sides AB and AC are commensurable, take

E
L : i P some unit of length, as E, which is contained a whole
ﬁ number of times in each, as five times in AC, and
p eight times in AB, and apply it to the lines, dividing
e : them respectively into five and eight equal parts.
A7 25 46 67 g  Fromtheseveral points of diwsion draw lines through

Fre. 221, the rectangle perpendicular to its sides. The rect-
angle will be divided into small parallelograms,
which are all equal squares, as the angles are all right angles, and the sides all

o b o

[
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equal to each other. Each square is a unit of surface, and the area of the rect-
angle is expressed by the number of these squares, which is evidently equal to
the number in the row on AB, multiplied by the number of such rows, or the
mumber of linear units in AB multiplied by the number in AD.

If the two sides of the rectangle are not commmensurable, take some very
small unit of length which will divide one of the sides, as AC, and divide the
wxectangle into squares as before; the number of these squares will be the
ameasure of the rectangle, except a small part along one side, not covered by the
squares. By taking a still smaller unit, the part left unmeasured by the squares
~will be still less, and by diminishing the unit of length E, we can wmake the
part unmeasured as small as we choose. It may, therefore, be made infinitely
small by regarding the unit of measure as infinitesimal, and consequently is to

be neglected.* Hence, in any case, the area of a rectangle is equal to the pro-
duct of its base into its altitude. Q. E.D.

321. Cor. 1.—The area of a square 18 equal to the second power
of one of its sides, as in this case the base and altitude are equal.

322. Cor. 2.—The area of any parallelogram is equal to the pro-
duct of its base into its altitude; for any parallelogram is equivalent
to a rectangle of the same base and altitude (313).

323. Cor. 3.—The area of a triangle i3 equal to one-half the pro-
duct of its base and altitude ; for a triangle is one-half of a parallelo-
gram of the same base and altitude (3 14).

324. Cor. 4.—Parallelograms or trianglest of equal bases are to
each other as their altitudes ; of equal altitudes, as their bases; and
in general they are to each other as the products of their bases by
their altitudes.

PROPOSITION VIL

325. Theorem.—The area of a trapezoid 18 equal to the product
of it altitude into one-half the sum of its parallel sides, or, what 18
tle same thing, the product of its altitude and a line joining the
middle points of its inclined sides.

* This principle may be thus stated: An infinitesimal is a quantity conceived, and to
¢ treated, as less than any assignahle quantity; hence, as added to or subtracted from flnite

<Quantities, it has no value. Thus, suppose '%: = a, m, n, and a being finite quantities. Letc¢

mte m mte
e ) or ey is to be considered as still equal fo

&, for to consider it to differ from @ by any amonnt we might name, would be to assign some
“value to ¢.

+ By this is meant the areas of the figures.

Xepresent an infinitesimal; then
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DemM.—In the trapezoid ABCD draw either diagonal, as AC. It is thus
divided into two triangles, whose areas are to-
gether equal to one-half the product of their
common altitude (the altitude of the trapezoid),
into their bases DC and AB, or this altitude into
+ (AB + DC).

Secondly, if ab be drawn bisecting AD and
CB, then is ab = } (AB + CD). For, through
a and b draw the perpendiculars om and pn, _
meeting DC produced when necessary. Now, the triangles aoD and Agm are =m—¢
equal, since Aa = aD, angle o = m, both being right, and angle saD = Aam =ww
being opposite. 'Whence Am = oD. In like manner we may show that Cp = ——
nB. Hence, ab = }(op + mn) = $(AB + DC); and area ABCD, which equals s== flls
altitude into §(AB + DC), = altitude into ab. Q. E. D.

gg AN

Fia. 228.

4

PROPOSITION VIIIL.

326. Theorem.—Ths area of a regular polygon 1s equal to one—=-
half the product of its apothem into its perimeter.

DeM.—Let ABCDEFG be a regular polygon whose apothem is Qu; then =% ==
its area equal to } Oa (AB + BC + CD + DE + EF—® F
+ FG + GA).

Drawing the inscribed circle, the radii Oa, OB =S
etc., to the points of tangency, and the radii of the==3> 2€
circumscribed circle OA, OB, etc. (264, 265), the==>> -4¢
polygon is divided into as many equal triangles asa==-45
it has sides. Now, the apothem (or radius of the ==="¢
inscribed circle) is the common altitude of these tri- —
angles, and their bases make up the perimeter of the ==
polygon. Hence, the area = $ Oa (AB + BC + CD
+ DE + EF + FG + GA). q.E.D.

327, Cor.—The area of any polygon in which a circle can be
tnscribed is equal to one-half the product of the radius of the in-
scribed circle into the perimeter.

The student should draw a figure and observe the fact. It is especially
worthy of note in the case of a triangle. See Fig. 60.

PROPOSITION IX.

228. Theorem.—The area of a circle is equal to one-half the
product of ifs radius into its circumference.
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DrM.—Let Oa be the radius of a circle. Circum-
scribe any regular polygon. Now the area of this
yolygon is one-half the product of its apothem and
perimeter. Conceive the number of sides of the
yolygon, indefinitely increased, the polygon still
<continuing to be circumscribed. The apothem con-
tinues to be the radius of the circle, and the perim-
eter approaches the circumference. 'When, there-
fore, the number of sides of the polygon becomes in-
finite, it is to be considered as coinciding with the cir-
cle, and its perimeter with the circumference. Hence
the area of the circle is equal to one-hslf the pro-
duct of its radius into its circumference. Q. E. D.

329. Der.—A Sector is a part of a circle included between two

radii and their intercepted arc. Similar Sectors are sectors in differ-
ent circles, which have equal angles at the centre.

330. Cor. 1.—The area of a sector is equal to one-half the product
of the radius into the arc of the sector.

331. Cor. 2.—The area of a sector is to the area of the circls as

the arc of the sector is to the circumference, or as the angle of the
sector is to four right angles.

EXERCISES.

1. What is the area in acres of a triangle whose base is 75 rods
and altitude 110 rods?

2. What is the area of a right angled triangle whose sides about
the right angle are 126 feet and 72 feet ?

3. If 2 lines be drawn from the vertex of a triangle to the base,
Qlividing the base into parts which are to each other as 2, 3, and 5,
Thow is the triangle divided? How does a line drawn from an angle
o the middle of the opposite side divide a triangle?

4. Review the exercises on pages 49 and 50, giving the reasons, in
©ach case.
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SYNOPSIS.

[ ( Definition.
Prop. 1. Of parallelograms.{ Cor. Paral. and rectangle.
Cor. 1. Triangle and rectangl

A

Prop. I1L. Square on }, 4, { a line, etc.
Prop. IV. Trapezoid.
L Prop. V. To reduce a polygon to a triangle.

EQUIVALENCY.

( Cor. 1. Of square.
gor 2. &gy paralllelogram
. VI. le. or. 8. triangle.
Pror VI. Of ractangle Cor. 4. Relation of parallelograms and
of triangles.

A

?nor. VIL Of trapezoid.

Prop. VIIL Of regular polygons. { Cor. Of %y‘g(';:‘.]mscﬁbed

EQUIVALENCY AND AREA.
AREA.

Def. Of sector.

i C%n' 1. Area of sector.
Pror. IX. Of a circle. { Cor. 2. Relation of sector to circle.

L

L EXERCISES.

SECTION X.
OF SIMILARITY.

332. The primary notion of similarity is likeness of form. Two
figures are said to be similar which have the same shape, although
they may differ in magnitude* A more scientific definition is as
follows:

333. Similar Figures are such as have their angles respec-
tively equal, and their homologous sides proportional.

334. Homologous Sides of similar figures are those which
are included between equal angles in the respective figures.

* The student should be carefnl, at the outset, to mark the fact that simélarity involres
two things, EQUALITY OF ANGLES and PROPORTIONALITY OF SIDES. It will appear that, in the
case of triangles, if one of thesc facts exiets, the other does aleo; but thie is not so in other
polygons, as is illustrated in Part I

Pror. II. Of triangles. { Cor. 2. Of equal bases and equal altitudes—-
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IN StMitar TRIANGLES, THE HOMOLOGOUS SIDES ARE THOSE
PPOSITE THE EQUAL ANGLES.

PROPOSITION L

335. Theorem.—Triangles which are mutually equiangular
ire similar.

DEM.—Let ABC and DEF be two mu-
ually equiangular triangles, in which
\=D, B=E, and C=F; then are the
ides opposite these equal angles propor-
ional, and the triangles possess both
equisites of similar figures; ¢. e., they
re mutually equiangular and have their
iomologous sides proportional, and are
:onsequently similar.

To prove that the sides opposite the
:qual angles are proportional, place the
riangle DEF upon ABC, so that F shall
:oincide with its equal C, CE’=FE, and Fie. 231.
>D’=FD. Draw AE’, and D'B. Since angle CE’'D’==CBA, D'E’ is parallel to
AB, and the triangles D’E’A and D’E’'B have a common base D’E’ and the
same altitude, their vertices lying in a line parallel to their base, they are
equivalent (324). Now, the triangles CD’E’ and D’E’A, having a common alti-
tude, are to each other as their bases (324). Hence,

CD’E’': D'E'A : : CD’: D’A.

For like reason CD'E’: D'E'B:: CE’: E'B.
Then, eince D’E’A and D’E’B are equivalent, the two proportions have a com-
mon ratio, and we may write CD’ : D’A ;; CE’ : E'B.

By composition CD’: CD’+D’A :: CE’: CE'+E'B,

or CD’':CA::CE':CB, orFD:CA::FE:CB.

In a similar manner, by applying angle E to B, we can show that
FE:CB::ED:BA. Therefore, FD :CA::FE:CB::ED:BA. Q. E. D.

336. Cor. 1.—If two iriangles have two angles of the one respec—
tively equal to two angles of the other, the third angles being equal
(221), the triangles are similar.

337. Cor. 2.—4 line drawn through a triangle parallel to any
side divides the other sides proportionally.

Thus D’E’ being para]lel to AB, it is shown in the proposition that
: D’A :: CE': E'B.
10
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338. Cor. 3.—If any two lines cut a series of parallels, they are
divided proportionally.

o o ! DeM.—If the two secant a
lines are parallel, as OAand _g§
2 O’B) the intercepted parts gy
are equal, 8. 6., ac = bd, ¢ ==,
e = df, g = fh, etc. (242). _g
Henee, ac : bd ::08:4f::
s fh. Secondly, if thaa
seca.nt lines are not parallel,. ],
. B A B’ let them meet in some point. st
Fie. 282,

a8 0. Then, by the propo-em—.
sition, we have

Oa:ac::00:b5d (1)) andalsoOc:ce::0d :df (2)
Taking the first by composition, it becomes
Oa + ac :ac ::0b + bd : bd,or Oc : ac :: Od : dd (8).
Now, as the antecedents in (2) and (3) are the same, we have
ac : bd :: ce : df,orac: ce :: bd : df.
In like manner, we may show that

ce :df ::e9 : fhyor ce : eg :: df : fA

~ PROPOSITION IL

339. Theorem.—Conversely, If two iriangles have their cor—""
responding sides proportional, they are similar.

DEm.—In the triangles ABC and DFE,let FD : CA :: FE : CB:: DE : AB i
then are the triangles similar. =
As one of the characteristics of simi— —
larity, viz., proportionality of sides, exist=—""
F by hypothesis, we have only to prove="
the other, ¢. 6., that the triangles are mu—"
tually equiangular. Make CD’ equal to FD,,.
and draw D’E’ paralle]l to AB. By thes
preceding proposition CD’ (= FD): . CA:=
E DE : AB, But, by hypothesis, FD:
CA:: DE: AB. Whence, D’E’ = DE.
In like manner CE': CB:: CD’ (=FD):
CA. Baut, by hypothesis, FE : CB:: FD :
CA. Whence CE’ = FE; and the trian-
Fie. 238 gle CD’E’ is equal to the triangle FDE
(292). Now, CD’E’ and CAB are mutu-
ally equiangular, since D’E’ is parallel to AB (152), and C is common. Hence,
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he triangles ABC and DEF are mutually equiangular, and consequently similar.
» B. D. .

340. Scr.—As we now know that if two triangles are mutually equiangular,
aey are similar; or, if they have their sides proportional, they are similar, it will
e sufficient hereafter, in any given case, to prove either one of these facts, in order
> establish the similarity of two triangles. For, either fact being proved, the
ther follows as a consequence. See Section V1., PART L, for familiar illustra-
ions of this most important subject.

PROPOSITION IIL

341. Theorem.—Two triangles which have the sides of the one
~espectively parallel or perpendicular to the sides. of the other, are
similar.

Dem.—Let ABC and A’'B’C’ be two triangles whose sides are respectively
oarallel or perpendicular to each other,

:hen are the triangles similar. . C ' e~ A C
For, any angle in one triangle is
sither equal or supplementary to the 2 %
phgle in the other which is included o b
between the sides which are parallel or
A B A

perpendicular to its own sides. Thus A ¢ B
either equals A’, or A + A’ = 2 right

angles (281, 282, 283). Now, if the c
corresponding angles are all supplemen-
tary, thatis,ifA + A=2RA,B + B’
=2RA.,andC + C’'=2 R.A,, the sum
of the angles of the two triangles is 6 A
right angles, which isimpossible. Again,
if one angle in one triangle equals the
corresponding angle in the other, as A
= A’, and the other angles are supple-’ Bl
mentary, the sum is 4 right angles plus

twice the equal angle, which is impossible. Hence, two of the angles of one
triangle must be equal respectively to two angles of the other; and, if two are
equal, the third angle in one is equal to the third in the other (221). Hence,
the triangles are mutually equiangular, and therefore similar (335). Q. E. D.

B
C

Fie. 384,

—_—

PROPOSITION IV.

342. Theorem.—Two triangies, which have an angle in each
equal, and the sides about the equal angles proportional, are similar.
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DeM.—In the triangles ABC and DEF
let C = F, and AC : DF :: CB : FE;

F, then are the triangles similar.
For, place F on its equal C, and let D
fall at D' Draw D'E' parallel to AB. _ @8,
Then AC:D'C (= DF) :: BC: CE' (887). Q).
: But by hypothesis AC:DF :: BC : FE =,

ﬁ!l

.. CE' = FE, and the triangles D'CE' and MF>d
DFE are equal (284). Therefore, D'CE~_—F'
being equiangular with ACB, is similar ..s=ar
to it (335) ; and as DFE is equal to D'CE™_—=—,
DFE is similar to ACB. Q. E.D.

PROPOSITION V.

343. Theorem.—In any right angled triangle, if a line bew =%
drawn from the right angle perpendicular fo the hypotenuse, i =
divides the triangle into two triangles, which are similar to the givens—<"
triangle, and consequently similar to each other.

-
DeM.—Let ACB be a triangle right-angled at C, and CD a perpendicularsc—Sar
upon the hypotenuse AB; then are ACD and CD!
C similar to ACB, and consequently to each other.
For, the triangles ACD and ACB have the angle ASE=w-A
common, and a right angle in each; hence they are=sws¢
d 5 .B mutually equiangular, and conseqnently similar(335),(_)'
For a like reason CDB and ACB are similar. Finally, —<
F1e. 256. as ACD and CDB are both similar to ACB, they arc=m=t
similar to each other. Q. E. D.

344. Cor. 1.—Either side about the right angle is a mean propor-/
tional between the whole kypotenuse and the adjacent segment.

DEM.—This is a direct consequence of the similarity of the partial triangles—
with the whole triangle. Thus, comparing the homologous sides of ACD
and ACB, we have AD : AC :: AC : AB;* and from CDB and ACB, we have
DB : CB :: CB : AB.

345. Cor. 2—The perpendicular is a mean proportumal between
the segments of the hypotenuse.

Dem.—This is a consequence of the similarity of ACD and CDB. Thus,
AD:CD::CD:DB. .

* Notice that AD of the triangle ACD ie opposite angle ACD, and AC, its consequent, is
of the triangle ACB, and opposite the angle B, which equals angle ACD. The student must
be sure that he knows in what order to take the sides, and why.
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Queries.—To which triangle does the first CD belong? To which the second ?
"Why is CD made the consequent of AD? Why,in the second ratio, are CD and
DB to be compared ?

346. Cor. 3.—The square described on the hypotenuse of a right
angled triangle is equivalent to the sum of the squares described on
Zhe other two sides.

Dem.—From Cor. 1, AC’ = ABxAD
and also CB’ =ABxDB.
*Therefore, adding, AC® +CB"=AB(AD+DB) = AB",

34%. Cor. 4—If a perpendicular be let fall from any point in a
circumference upon a diameter, this perpendic-
ular is a mean proportional between the seg-
ments of the diameter.

DEM.—Thus,AD :CD :: CD : DB, or CD* =AD x DB.

For, drawing AC and CB, ACB is a right angle,
and the case falls under Cor. 2. '

The chords AC and CB are mean proportionals between the whole diameter
and their adjacent segments by Cor. 1.

348. Sca.—This proposition, with its corollaries, is perhaps the most fruit-
ful in direct practical results of any in Geometry. Cor. 3 will be recognized
as a demonstration of the Pythagorean proposition (209), PART 1. There are
many other demonstrations of exceeding beauty, some of which will be given
in Parr III. The one here given is the simplest, and shows best the way in
which this truth grows out of the more general fact of similarity.

D B
Fie. 287.

PROPOSITION VI.

349. Theorem.—Regular polygons of the same number of sides
are stmilar figures.

DEM.—Let P and P’ be two regular polygons of the same number of sides,*
@, b, ¢, d, etc., being the sides of the former, and o', ¥', ¢, &, etc., the sides of
the latter. Now, by the definition of regular polygons, the sides g, b, ¢, d,
€tc., are equal each to each, and also a', ¥, ¢, d’, etc. Hence, we have
@:a'::b:b::¢:¢::d:d, etc. Again, the angles are equal, since # being
the number of sides of each polygon, each angle is

n x 2 right angles; 4 right angles (256).

Mence the polygons are mutually equiangular, and have their sides proportional ;
that is, they are similar. Q. E. D.

* The student may construct two regular hexagons, if thought desirable.
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350. Cor. 1.—The corresponding diagonals of regular polygons
of the same number of sides are in the same ratio as the sides of the

polygons.
Let the student draw a figure and demonstrate the fact.

351. Cor. 2—The radii of the inscribed, and also of the circum-
F E scribed circles, of regular polygons of the
same number of sides, are tn the same ratio

as the sides of the polygons.

A D DEeM.—S8ince the angles F and f are equal, and
bisected by FO. the right angled triangles OSF,
Osf are equiangular, and hence similar. There-
fore FS : f3 : : SO : 0 or FO: fO. Whence,
B (< doubling both terms of the first couplet,
Fie. 238. FA : fa ::SO : 0 or FO : JO.

PROPOSITION VIL

352. Theorem.—Circles are similar figures.

F E Dem.—Let Oa and OA be the radii of any
two circles. Place the circles so that they shall
be concentric, as in the figure. Inscribe the regu-
lar hexagons, as abed¢f, ABCDEF. Conceive the

A D arcs AB, BC, etc., of the outer circumference, bi-
sected, and the regular dodecagon inscribed, and
also the corresponding regular dodecagon in the

B C inner circumference. These are similar figures
Fre. 239. by (349). Now, as the process of bisecting the

arcs of the exterior circumference can be con-
ceived as indefinitely repeated, and the corresponding regular polygons as in-
scribed in each circle, the circles may be considered as regular polygons of the
same number of sides, and hence similar. Q. E. D,
353, Cor—Arecs of similar sectors are to each other as the radii
of their circles; 4. e., arc f8 : arc FE : : Of : OF.

ScE.—The circle is said to be the Limit of the inscribed polygon, and
the circumference the limit of the perimeter. By this is meant that as the
number of the sides of the inscribed polygon is increased it approaches nearer
and nearer 1o equality with tbe circle. The apothem approaches equality with
the radius, and hence has the radius for its limit. It is an axiom of great
importance in mathematics that, Whatever can be shown to be true of a magns-
tude as it approaches its limit indefinstely, i8 true of that imit.

cal I
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EXERCISES.

1. Prob.—To divide a given line into parts
eohich shall be proportional to several given
Zines.

SoLuTION.—Let it be required to divide OP into
yarts proportional to the lines A, B,C, and D. Draw
©ON making any convenient angle with OP, and on it
Jay off A, B, C, and D, in succession, terminating at
M. Join M with the extremity P, and draw parallels to
WP through the other points of division. Then by
xeason of the parallels we shall have .

A:B:C:D::a:d:c:d, (338).

Fra. 40.

2. Prob.—To ﬁn'd a fourth proportional to three given lines.
For the solution see (89). Repeat the process, and give the reasons.

3. Prob.—To find a third propor-
tional to two given lines.

SovruTiON.—This may be solved as the two
preceding. Thus, take any two lines, as A and
B, for the given lines. We are to find a third
line z, such that A : B :: B: 2. The figure
will suggest the details. .

The following is a solution based on (347).
Draw an indefinite line AM. Take AD = A,
and erect BD = B. Join AB, and bisect it by /
the perpendicular ON. Then with O as a cen- /
tre, and OA as a radius, describe a semi-circum- !
ference. This will pass through B. (Why?) M C
Also AD : BD :: BD : CD (=2). (Why?) F1e. 247,

4. Draw any straight line on the blackboard, and divide it into §
equal parts, upon the principle used in the preceding solutions.
5. Review the exercises under (89, 90), and give the reasons.

6. Prob.—To find a mean proportional between two given lines.

For the solution see (210). Repeat the process, and give
‘the reasons for the method.

7. DE being parallel to BC, prove that the triangles
DOE and BOC are similar, and hence that oD : 0C ::
OE : 0B. Are the following proportions true?

OD :0C:: OE : OB, OD : DE :: OC : BC,
OD : OE:: OC : OB, OB : BC :: OE : DE.
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DEM.—By constructing- any trapezoid, and drawing ecither diagonal, the
student can show the truth of this theorem.

PROPOSITION V.
319. Prob.—To reduce any polygon to an equivalent triangle.

SoLuTioN.—Let ABCDEF be a polygon which it is proposed to reduce to an

equivalent triangle. Produce any side, as BC, indefinitely. Draw the diagonal
EC and DH parallel to it

F Draw EH. Now, consider the
triangle CDE as cut off from
the polygon and replaced by
CHE. The magnitude of the
polygon will not be changed,

{ - since CDE and CHE have the
same base CE, and the same
altitude, as their vertices lie in

H ' DH parallel to EC. From the

Fia. 226. polygon thus reduced we cut
the triangle FHE, and replace

it by its equivalent FHI, by drawing the diagonal FH, and the parallel El. In
like manner, by drawing FB and the parallel AG, we can replace FBA by its

equivalent FGB. Hence, GFl is equivalent to ABCDEF. It is evident that a

similar process would reduce a polygon of any number of sides to an equiva-
lent triangle.

PROPOSITION VL

320. Theorem.—The area of a rectangle s equal to the product
of its base and altitude.

DeM.—Let ABCD be a rectangle, then is its area equal to the base AB multi-
plied by the altitude AC.

If the sides AB and AC are commensurable, take
some unit of length, as E, which is contained a whole
number of times in each, as five times in AC, and
eight times in AB, and apply it to the lines, dividing
them respectively into five and eight equal parts.
From the several points of diwsion draw lines through

Fie. 997, the rectangle perpendicular to its sides. The rect-
angle will be divided into small parallelograms,
which are all equal squares, as the angles are al\ right ang)es, s0d e wides all
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SECTION XI.

APPLICATIONS OF THE DOCTRINE OF SIMILARITY TO THE
DEVELOPMENT OF GEOMETRICAL PROPERTIES OF FIGURES.

354. The doctrine of similarity, as presented in the preceding
section, 18 the chief reliance for the development of the geometrical
properties of figures. This section will be devoted to the investiga-

tion of a few of the more elementary properties of plane figures,
which we are able to discover by means of this doctrine.

OF THE RELATIONS OF THE SEGMENTS OF TWO LINES INTERSECT-
ING EACH OTHER, AND INTERSECTED BY A CIRCUMFERENCE.

PROPOSITION L

355. Theorem.—If two chords intersect each other in a circle,

Z heir segments are reciprocally proportional ; whence the product of

Zhe segments of one chord equals the product of the segments of the
©ther.

Dem.—Let the chords AC and BD intersect at O; thenis AO : BO :: DO :
€O, whence AO x CO = BO x DO.

For,draw AD and BC. The two triangles AOD and BOC
=re equiangular, and hence similar ; since the angles at O
are vertical, and consequently equal (134),and D = C,
because both are measured by 4 arc AB (210). (A =B
because both are measured by 4 arc DC; but it is only
necessary {0 show that fwo angles are equal in order to
show that the triangles are equiangular, and hence simi-
lar.) Now, comparing the homologous sides (those oppo-
site the equal angles), we have AO : BO :: DO : CO; Fie. 24.
whence, AO x CO = BO x DO. q. E. D.

QUERIES.—Why is AO compared with BO? Why DO with CO? Would
AO : CO :: BO : DO be true? Would AO : DO :: BO : CO? What is the
force of the word “reciprocally,” as used in the proposition ?
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PROPOSITION IL

356. Theorem.—If from a point without a circle, two secanis=—=s
be drawn terminating in the concave arc, the whole secants are recip- -
rocally proportional to their external segments; whence the producs ==t
of one secant into 113 external segment equals the product of the othems==r

Q, tnlo its external segment.

DeM.—OA and OB being secants, OA : OB :
OC : OD, and consequently OA x OD = OB x OCS
For, drawing AC and DB, the two triangles ACC— O
and BDO have angle O common, and A = B, sinc. =—=x¢
both are measured by 4 DC; hence the triangles ar- ——mmxe
gimilar, and we have OA : OB :: OC : OD, anaw _mnd
consequently OA x OD == OB x OC. Q. E.D.

Same queries as under the preceding demonstrassess"3-
tion.

PROPOSITION IIL

35%7. Theorem.—If from a point without a circle a tangent bes <
drawn, and a secant terminating in the concave arc, the tangent is a=—=10
mean proportional between the whole secant and its external seg— -

ment; whence the square of the tangent equalse===
c the product of the secant into its external seg——
ment.

DEn.—OA being a tangent and OB a secant, OB :—
OA :: OA: OC, whence OA' = OB x OC. For,
B drawing AB and AC, the triangles OAB and ACO have
angle O common, and OAC = B, since each is measured
by % arc AC; hence the triangles are similar, and OB :
Fia. 248. OA :: OA : OC, whence A’ = OB x OC. Q. E. D.

OF THE BISECTOR OF AN ANGLE OF A TRIANGLE.

PROPOSITION IV.

358. Theorem.—A line which bisects any angls of a triangle

divides the opposite side into segments proportional to the ad;accmt
sides.
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DEM.—Let Oa be the radius of a circle. Circum-
scribe any regular polygon. Now the area of this
polygon is one-half the product of its apothem and
perimeter. Conceive the number of sides of the
polygon, indefinitely increased, the polygon still
continuing to be circumscribed. The apothem con-
tinues to be the radius of the circle, and the perim-
eter approaches the circumference. 'When, there-
fore, the number of sides of the polygon becomes in-
finite, it is to be considered as coinciding with the cir-
cle, and its perimeter with the circumference. Hence
the area of the circle is equal to one-hslf the pro-
duct of its radius into its circumference. Q. E. D.

329. Der.—A Sector is a part of a circle included between two
radii and their intercepted arc. Similar Sectors are sectors in differ-
ent circles, which have equal angles at the centre.

330. Cor. 1.—The area of a sector 13 equal to one-half the product
of the radius into the arc of the sector.

331. Cor. 2.—The area of a sector is to the area of the circle as
Zhe arc of the sector is to the circumference, or as the angle of the
Sector 18 to four right angles.

EXERCISES.

1. What is the area in acres of a triangle whose base is 75 rods
and altitnde 110 rods?

2. What is the area of a right angled triangle whose sides about
the right angle are 126 feet and 72 feet ?

3. If 2 lines be drawn from the vertex of a triangle to the base,
dividing the base into parts which are to each other as 2, 3, and 5,
how is the triangle divided? How does a line drawn from an angle
to the middle of the opposite side divide a triangle?

4. Review the exercises on pages 49 and 50, giving the reasons, in
each case.
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PROPOSITION VIL

361. Theorem.—The bisectors of the angles of a triangle all
pass through the same point, which 18 the centre of the inscribed
circle.

DeM.—Draw two lines bisecting two of the angles, and from their inter-
section draw a line to the-other angle. Then show that the latter angle is
bisected. By (Ex. 4, page 134) this point is shown to be the centre of the in-
scribed circle. [The student should fill out the demonstration.]

AREAS OF SIMILAR FIGURES.

PROPOSITION VIIL

A V)
A~

4== 18
—_—_-

362. Theorem.—The areas of similar triangles are to eachna ==h

other as the squares described on their homologous sides.

DeM.—Let ABC and DEF be any two similar triangles; then is
area ABC : area DEF:: CB®: FE :: AC : DF*:- AB': DE"

For, place the largest angle of the triangles & =l
DEF, as D, on its equal angle A, of the triangles & =k

(&
F F ABC*; let E fall at E/, F at F’, and drawar® ¥
E’F’; then is triangle AE'F’ — DEF (284), andiF>-2d
H E’'F’ is parallel to BC. Let fall a perpendicularsc -7
5 from A to CB. Then Al is the altitude of AE'F/.— 7
A8 £

— -

and AH of ABC. Now, by similar triangles we=2%¢

have CB :F'E’::AH : Al.

Fia. 250.
“ But 3AH:3Al::AH:Al; and, multiplying=—=

corresponding terms, 3 AH x CB: 3Al x F/E’ :: AH": Al'.  Whence, since
$AH x CB = area ABC, and }Al x F’E’ = area AE'F'= area DEF, and
AH:Al::CB:FE::AC:DF::AB:DE, or AH'AI’::CB':FE :: AC : DF

::AB’:: DE'; we have
area ABC : area DEF :: CB : FE ::AC*: DF*:: AB’: DE" Q. E.D.

PROPOSITION IX.

363. Theorem.—The areas of similar polygons are to each
other as the squares of the homologous sides of the polygons.

* The only object in taking the largest angle is to make the perpendicular fall witkin the
triangle. Any two equal angles may be applied, and the demonstration is essentially the same.
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DeM.—Let abedsf and ABCDEF
Toe two similar polygons. Desig-
mate the former by p, and the lat-
ter by P. Then p: P :: a5 :: AB"
or as any other two homologons
sides.

For, from the equal angles a
and A drawing the diagonals, the
corresponding partial angles into
which ¢ and A are divided are

Fia. 351,
equal. [Let the student show why by 342.] Now take Ab'=ab, and draw

b'¢’, making angle Ab'¢’ =0. Then b'c’ =bs, and Ac' = a¢, since the triangles
abe and Ab'¢’ have two angles and the included side of one equal to two angles

and the included side of the other. In like manner draw ¢'d’' making angle
b'dd' = bed, ¢’'d'=cd, and Ad'=ad. 8o, also, making angle ¢'d'¢'= cds, and angle
def' =def, d¢ = de, 6f' = ¢f, and f'A = fa. Hence the polygon AVc'd'ef'= p,
and its sides are respectively parallel to the corresponding sides of P. Now, let
m, n, o, and s represent the triangles in which they stand, and M, N, O, and S

the corresponding triangles of P, as AFE, etc. Triangles m and M being similar,
and also n» and N, we have

m:M::_A_o":A—E',&ndn:N :: Aé” : AE,
Whence m:M::n:N
In like manner we can show thatz : N ::0: O, and thato:0::8:S.
Whence m:M::n:N:- 0:0::8:S.
By composition, (m+n+0+8) (or p) : (M+N+O +S) (or P)::8:S.
But 8: S:: Ab” (orab): AB". Therefore p: P:: @b : AB’, or as the squares of
any two homologous sides. Q. E. D.

364. Cor. 1.—Similar polygons* are to each other as the squares
of their corresponding diagonals.

In the demonstration we haves:S::Ac’ (orac): AC’. Whencep:P::ac :AC".
The same may be shown of any other corresponding diagonals.

365. Cor. 2.—Regular polygons* of the same number of sides

@re to each other as the squares of their homologous sides ; since they
are similar figures (349).

366. Cor. 3.—Regular polygons* of the same number of sides
are to euch other as the squares of their apothems.

For their apothems are to each other as their sides. Hence the squares of
their apothems are to each other as the squares of their sides.

36%7. Cor. 4.-—Circles are to each other as the squares of their
radii (352),and as the squares of their diameters.

¢ This {s a common elliptical form for * The areas of, etc.”
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338. Cor. 3.—If any two lines cut a series of parallels, they are
divided proportionally.

o} (o) i Dem.—If the two secant

lines are parallel, as OA and

O’B) the intercepted parts

are equal, t. 6., ac = bd, ce

. =df, g = [k, elc. (242).

- Hence, as : bd :: 06 : df ::

eg : fh. Becondly, if the

secant lines are not parallel,

) B A B’ let them meet in some point,
Fia. 282,

a8 O. Then, by the propo-
sition, we have

Oz:ac::00:bd (1), andalsoOc:ce::0d :df ().
Taking the first by composition, it becomes
Oa + ac :ac ::0b + bd : bd,or Oc : ac :: Od : bd (8).
Now, as the antecedents in (2) and (3) are the same, we have
ac : bd :: ce : df,orac: ce :: bd : df.

In like manner, we may show that

ce :df ::e9 : fhyor ce : 69 :: df : fA.

_ PROPOSITION IL

339. Theorem.—Conversely, If two triangles have their cor-
responding sides proportional, they are similar. :

DEM.—In the triangles ABC and DFE,let FD : CA :: FE : CB:: DE: AB;
then are the triangles similar.

As one of the characteristics of simi-
larity, viz., proportionality of sides, exists
by hypothesis, we have only to prove
the other, ¢. 6., that the triangles are mu-
tually equiangular. Make CD’ equal toFD,
and draw D’E’ parallel to AB. By the
preceding proposition CD’ (= FD):.CA ::

E DE’ : AB. But, by hypothesis, FD:
CA:: DE: AB. Whence, D’E’' = DE.

In like manner CE': CB :: CD’ (=FD):

CA. But, by hypothesis, FE : CB:: FD :

CA. Whence CE’ = FE; and the trian-

Fie. 283. gle CO’E’ is equal to the triangle FDE

(292). Now, CO’E’ and CAB are mutu-

ally eqamngular since D’E’ is parallel to AB (152), 50d © i common. TWenex.
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AB, (, and the chord of half the arc, as CB,e. Now, BDO is right angled at

©, whence BO' =BD" + DO (346), or DO = 4/ BO'—BD". Butin the present
case BO = 1; hence DO =1/1—%(. Taking DO from CO, we haveCD =1 —
1/ 1—1C* From the right angled triangle BDC we have CB (or ¢) =

v BD® + CD’, or substituting } ¢ for BD, and 1 — +/1 — 10" for CD, this re-

duces to e=4/a_Vi_(», or, [2—(4—0’)‘]’
By the use of this formula, we make the following computations :
No. sides. Form ofCompnm.lon Length of Side. Perimeter.
6. Bee (271) . . . . 1.00000000 6.00000000
12. c=4/3— Va—D=42— r or (2 s‘)* = 51763809 621165708
24 o= {2-[4—(-sh I} =[2—(2+8)]} . = 26105288 6.26525722

3 o= (2-{4-[3-(+)]
==L e

96. c=(2—{2+[2+(2+8) ]t} 1) .08543817 6.28206396
102. o =[2—(2+ {2+ [2+(2+8)]H} )] 08272346 6.28200510
884, o= {2—[2+(2+ {2+ [2+(2+8Y) [T} = 01686228 6.28311544
768, o= (2—{2+[2+(2+ {2+[2+(2+8Y) ] } ] } 1)} = 00818121 6.28316041
It now appears that the first four decimal figures do not change as the num-
ber of sides is increased, but will remain the same Aow far soever we proceed.

We may therefore consider 6.28317, as approzimately the circumference of a
circle whose radius is 1, ¢. 6., 27 = 6.28817, nearly ; and 7 = 8.1416, nearly.

.13080626 6.27870041

373. 8ce—The symbol # is much used in mathematics, and signifies,
DPrimarily, the semi-ciroumference of a circls whoss radsus ¢s 1. 3= is therefore
& symbol for a quadrant, 90°, or a right angle. % = is equivalent to 45°, ete.,
the radius being always supposed 1, unless statement is made to the contrary.
"The numerical value of 7 has been soughtin a great variety of ways, all of
“Svhich agree in the conclusion that it cannot be exactly expressed in decimal
mumbers, but is approximately as given in the proposition. From the time of
~Archimedes (287 B.c.) to the present, much ingenious labor has been bestowed
gpon this problem. The most expeditious and elegant methods of approxi-
xmation are furnished by the Caleulus. The following is the value of # extended
o fifteen places of decimals: 8.141592653589798.

PROPOSITION XIL

374. Theorem.—The circumference of -any circle 18 2ar, r
being the radius.
Drx. — The circumferences of circles being to each other as their radii, and
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DeM.—In the triangles ABC and DEF
let C = F, and AC : DF :: CB : FE;

F then are the triangles similar.
For, place F on its equal C, and let D
fall at D'. Draw D'E' parallel to AB.
Then AC:D’'C (= DF) :: BC: CE' (837).
: But by hypothesis AC: DF :: BC : FE

.. CE' = FE, and the triangles D'CE’ and
DFE are equal (284). Therefore, D'CE'
being equiangular with ACB, is similar
to it (335) ; and as DFE is equal to D'CE/,
DFE is similar to ACB. Q. E. D.

PROPOSITION V.

343. Theorem.—In any right angled triangle, if a line be
drawn from the right angle perpendicular to the hypotenuse, it
divides the triangle into two triangles, which are similar to the given
triangle, and consequently similar to each other.

DemM.—Let ACB be & triangle right-angled at C, and CD a perpendicular
upon the hypotenuse AB; then are ACD and CDB
C stmilar to ACB, and consequently to each other.
For, the triangles ACD and ACB have the angle A
common, and a right angle in each; hence they are
b8 mutually equiangular, and consequently similar(335).
For a like reason CDB and ACB are similar. Finally,
Fia. 3. as ACD and CDB are both similar to ACB, they are
similar to each other. Q. E. D.

344. Cor. 1.—Either side about the right angle 13 a mean propor-
tional between the whole hypotenuse and the adjacent segment.

DEeM.—This is a direct consequence of the similarity of the partial triangles
with the whole triangle. Thus, comparing the homologous sides of ACD
and ACB, we have AD : AC :: AC : AB;* and from CDB and ACB, we have
DB : CB :: CB : AB.

345. Cor. 2.—The perpendicular is a mean proporh,onal between
the segments of the hypotenuse.

DeM.—This is a consequence of the similarity of ACD and CDB. Thus,
AD:CD::CD:DB.

* Notice that AD of the triangle ACD ie oppoeite angle ACD, and AC, its consequent, is
of the triangle ACB, and opporite the angle B, which equale angle ACD. The student mus:
be sure that he knows in what order to take the idee, and why.
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Queries.—To which triangle does the first CD belong? To which the second ?
Why is CD made the consequent of AD? Why, in the second ratio, are CD and
DB to be compared ?

346. Cor. 3.—The square described on the hypotenuse of a right
angled triangle is equivalent to the sum of the squares described on
the other two sides.

Dem.—From Cor. 1, AC' = ABxAD
and also CB’'=ABxDB.
Therefore, adding, AC’ +CB"=AB(AD+DB) = AB".

3477, Cor. 4—If a perpendicular be let fall from any point tn a
circumference upon a diameter, this perpendic-
ular 18 @ mean proportional between the seg-
ments of the diameter.

DeM.—Thus,AD :CD :: CD : DB, or CD* =AD x DB.

For, drawing AC and CB, ACB is a right angle,
and the case falls under Cor. 2.

The chords AC and CB are mean proportionals between the whole diameter
and their adjacent segments by Cor. 1.

348. ScH.—This proposition, with its corollaries, is perhaps the most fruit-
ful in direct practical results of any in Geometry. Cor. 3 will be recognized
48 a demonstration of the Pythagorean proposition (209), PART I. There are
many other demonstrations of exceeding beauty, some of which will be given
in PART III. The one here given is the simplest, and shows best the way in
which this truth grows out of the more general fact of similarity.

D B
Fie. 287.

PROPOSITION VI.

349. Theorem.—Regular polygons of the same number of sides
are similar figures.

DemM.—Let P and P’ be two regular polygons of the same number of sides,*
8, b, ¢, d, etc., being the sides of the former, and a', %', ¢/, @, etc., the sides of
the latter. Now, by the definition of regular polygons, the sides a, b, ¢, d,
etc., are equal each to each, and also &', ¥, ¢, d, etc. Hence, we have
a:a' ::b:b::¢:¢::d:d,etc. Again, the angles are equal, since # being
the number of sides of each polygon, each angle is

n x 2 right angles ; 4 right angles (256).

Hence the polygons are mutually equiangular, and have their sides proportional ;
that is, they are similar. Q. E. D.

* The student may construct two regular hexagons, it thought desiredie.
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350. Cor. 1.—The corresponding diagonals of regular polygons
of the same number of sides are in the same ratio as the sides of the

polygons.
Let the student draw a figure and demonstrate the fact.

351. Cor. 2.—The radii of the inscribed, and also of the circum-
E E scribed circles, of regular polygons of the
same number of sides, are tn the same ratio

as the sides of the polygons.

A D DeM.—Since the angles F and f are equal, and
bisected by FO, the right angled triangles OSF,
Osf are equiangular, and hence similar. There-
fore FS : f8 : : SO : 860 or FO: fO. Whence,
B c doubiing both terms of the first couplet,
Fie. 238, FA : fa :: SO : 80 or FO : fO.

PROPOSITION VIL

352. Theorem.—Circles are similar figures.

F E DeM.—Let Oa and OA be the radii of any
two circles. Place the circles so that they shall
be concentric, as in the figure. Inscribe the regu-
lar hexagons, as abed¢f, ABCDEF. Conceive the

A o arcs AB, BC, etc., of the outer circumference, bi-
sected, and the regular dodecagon inscribed, and
also the corresponding regular dodecagon in the

B C inner circumference. These are similar figures
Fre. 239. by (349). Now, as the process of bisecting the

arcs of the exterior circumference can be con-
ceived as indefinitely repeated, and the corresponding regular polygons as in-
scribed in each circle, the circles may be considered as regular polygons of the
same number of sides, and hence similar. Q. E. p.
353, Cor—Arcs of similar sectors are to each other as the radii
of their circles; <. e., arc fe : arc FE : : Of : OF.

ScE.—The circle is said to be the Limit of the inscribed polygon, and
the circumference the limit of the perimeter. By this is meant that as the
number of the sides of the inscribed polygon is increased it approaches nearer
and nearer 1o equality with tbe circle. The apothem approaches equality with
the radius, and hence has the radius for its limit. It is an axiom of great
importance in mathematics that, Whatever can be shown lo be true of a magns-
Yude as 3t approaches its limst indefinstely, 18 true of that imit.
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14. Same as above when the sides are 10, 4,and 7, and the perpen-
dicular is let fall from the angle included by the sides 10 and 4.
Draw the figure. Why is one of the segments nagative ?

15. What is the area of a regular octagon inscribed in a circle
whose radius is 1? What is its perimeter? What if the radiuas
is10?

DOCTRINE OF SIMILARITY.

GEOMETRIC’AL PROPERTIES DEVELOPED BY MEANS OF THE

SYNOPSIS.

[ Importance of this doctrine.

ZwE [ Pror.I Of chords.
EEE { Pror. L Of secants.
é 05 Prop. ITI. Of secants and tangents,
2 8 g Prop. IV. How divide sides.
E E E © | Prop. V. Of exterior angles.
R g Prop. V1. Length of in relation to other parts.
A :[-‘ Prop. VIL All intersect at one point.
N Prop. VIIL Of triangles.
o g E % % ﬁg 8 areslof diagonals.
o olygon:
2 g | Proe. IX. Of polygons. Cor. 8. Asg:quu%sg apgthems
@ Cor. 4. Of circles.
( Definition of rectification.
a
z 7 | Pror. X. Perimeters of Oor. 1. Regular polygons.
; & sixmlar Poly-{ Gor. 9. Cirgt;.;lmferr’:n{gs as radii.
<
£2 { Pror. XI Rectiﬂcanon of circum-
< B +~ ( Sch. Bignification and
55 {:r{mce whose radius} ugnportanee ofm.
‘ .
& L Pror. XII. Cirgqgg?rence of any circle } Cor. Also zD.
& é Prop. XIIL. Whose radius is 1.
Cor. Of sector.
%s {PROP XIV. Of any circle. { Sch. Squaring the circle.

Prob. To divide a line in extreme and mean ratio.
{ Prob. To inscribe a regular decagon, etc.

I’
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8. Show that if ABCDEF is a regular polygon, Abcdef is also regular,
E D be, cd, etc., being parallel to BC, CD, ete
Show that any two similar polygons may be
placed in similar relative positions, and
F hence show that the corresponding diagonals
are in the same ratio as the homologous

sides.
f B 9. The sides of one triangle are 7, 9, and
Fio. 243. 11. The side of a second similar triangle,
homologous with side 9, is 44. What are the other sides of the

latter ?

10. The diameter of a circle is 20. What is the perpendicular
distance to the circumference from a point in the diameter 15 from
one extremity? What are the distances from the point where this
perpendicular meets the circumference to the extremities of the
diameter.?

SYNOPSIS.

Primary notion of similarity.
Definition of similarity.
Homogeneity of sides. In general. In triangles.
B ; Cor. 1. Two anfles equal

Prop. L. Mutually equiangular. { Cor. 3. A parallel to a side,

{ Cor. 8. Lines cutting parallels.

Prop. II. Sides proportional. { Sch, Either of two facts sufficient.
Prop. II1. Sides parallel or perpendicular.
ProP. IV. An angle equal in each, and sides proportional.

Cor. 1. Bide about right angle.

. Cor. 2. Perpendicular.
Prop. V. Perpendicular from Cor. 8. Bquare on hypotenuse.

right angle uponq ~ " 4" pe dicul di
. 4. Perpendicular on diameter.
hypotenuse. Sch. Importance of this Prop. and
8.

OF SIMILARITY.

Cor. 1. Corresponding diagonals.

Pror. VL Regular polygons similar. { Cor. 2. Radii of inscribed and cir-
cumscribed circles.

Prop. VIL Circles similar. { Seh. Circle limit of polygon.

Prob. ¥° givgde t? line into propm;ﬁional parts.
Prob. To find a fourth proportion:

ExERcIsES. Prob. To find a third proportional.
Prob. To find a mean proportional.
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SECTION XI.

APPLICATIONS OF THE DOCTRINE OF SIMILARITY TO THE
DEVELOPMENT OF GEOMETRICAL PROPERTIES OF FIGURES.

354, The doctrine of similarity, as presented in the preceding
section, is the chief reliance for the development of the geometrical
properties of figures. This section will be devoted to the investiga-
tion of a few of the more elementary properties of plane figures,
which we are able to discover by means of this doctrine.

OF THE RELATIONS OF THE SEGMENTS OF TWO LINES INTERSECT-
ING EACH OTHER, AND INTERSECTED BY A CIRCUMFERENCE.

PROPOSITION L

355. Theorem.—If two chords intersect each other in a circle,
their segments are reciprocally proportional ; whence the product of
the segments of one chord equals the product of the segments of the
other.

DeM.—Let the chords AC and BD intersect at O; then is AO : BO :: DO :
CO, whence AO x CO = BO x DO.

For,draw AD and BC. The two triangles AOD and BOC
are equiangular, and hence similar ; since the angles at O
are vertical, and consequently equal (Z34), and D = C,
because both are measured by 4 arc AB (210). (A =B
because both are measured by 4 arc DC; but it is only
necessary {o show that fwo angles are equal in order to
show that the triangles are equiangular, and hence simi-
lar.) Now, comparing the homologous sides (those oppo-
site the equal angles), we have AO : BO :: DO : CO;
whence, AO x CO=BO x DO. q. E. D.

QuERIES.—Why is AO compared with BO? Why DO with CO? Would
AO : CO :: BO : DO be true? Would AO : DO :: BO . CQ? Whet ia e
force of the word “reciprocally,” as used in the propositiont
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PROPOSITION IIL

356. Theorem.—If from a point without a circle, two secants
be drawn terminating in the concave arc, the whole secants are recip-
rocally proportional to their external segments; whence the product
of one secant into its external segment equals the product of the other
into its external segment.

DEM.—OA and OB being secants, OA : OB ::
OC : OD, and consequently OA x OD = OB x OC.
For, drawing AC and DB, the two triangles ACO
and BDO have angle O common, and A = B, since
both are measured by 4 DC; hence the triangles are
similar, and we have OA : OB :: OC : OD, and
consequently OA x OD == OB x OC. q E. D.

Same queries as under the preceding demonstra-
tion.

PROPOSITION IIL

387, Theorem.—If from a point without a eircle a tangent be
drawn, and a secant terminating in the concave arc, the tangent 18 a
mean proportional between the whole secant and its external seg-

ment; whence the square of the tangent equals
c the product of the secant into its external seg-
ment.

DEn.—OA being a tangent and OB a secant, OB :

A OA :: OA: OC, whence OA' = OB x OC. For,
B drawing AB and AC, the triangles OAB and ACO have

angle O common, and OAC = B, since each is measured

by 4 arc AC; hence the triangles are similar, and OB :

Fre. 246. OA :: OA : OC, whence OA' = OB x OC. q.E.D.

OF THE BISECTOR OF AN ANGLE OF A TRIANGLE.

PROPOSITION IV.

358. Theorem.—A line which bisects any angle of a triangle
divides the opposite side into segments proportional to the adjacent
#2228, '
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PROPOSITION IV.

391. Theorem.—If from any point in a perpendicular to a
plane, oblique lines be drawn to the plane, those whick pierce the
Pplane at equal distances from the foot of the perpendicular are cqual;
and of those which pierce the plane at unequal distances from the
Joot of the perpendicular, those which pierce at the greater distances
are the greater.

DeEM.—Let PD be a perpendicular to the plane
MN, and PE, PE’, PE", and PE’’, be oblique lines
piercing the plane at equal distances ED, E'D, E"D,
and E”'D, from the foot of the perpendicular; then
PE = PE' = PE" = PE”. For each of the tri-
angles PDE, PDE’, etc., has two sides and the in-
cluded angle equal to the corresponding parts in
the other.

Again, let FD be longer than E'D. Then is
PF > PE’. For, take ED = E'D; then PE = PE/,
by the preceding part of the demonstration. But
PF > PE by (139). Hence, PF > PE'. Q.E.D.

392. The Inclination of a line to a plane is measured by
the angle which the line makes with a line of the plane passing
through the point in which the line pierces the plane and the foot
of a perpendicular to the plane from any point in the line.

Thus PFD is the inclination of PF to the plane MN.

393. Cor. 1.—The angles which oblique lines drawn from & com-
mon point tn a perpendicular to a plane, and piercing the plane at
equal distances from the foot of the perpendicular, make with the

perpendicular, are equal ; and the inclinations of such lines to the
plans are equal.

Thus the equality of the triangles, asshown in the demonstration, shows that
EPD = E'PD = E"PD = E""PD, and PED = PE'D = PE"D = PE'"D.

394. Cor. 2—Conversely, If the angles which oblique lines
drawn from a point in @ perpendicular to a plane, make with the
perpendicular, are equal, the lines are equal, and pierce the plans at
equal distances from the foot of the perpendicular.

DEM.—Thus, in the figure, let DPE' = DPE"; then PE’' = PE” and DE’ =
DE”. For, revolve DE’'P about PD; DE’' will continue in the plane MN, and
when angle DPE' coincides with its equal DPE”, PE’ coincides with PE", and
DE’ with DE”.



156 ELEMENTARY PLANE GEOMETRY.

PROPOSITION VIL

361. Theorem.—The bisectors of the angles of a triangle all
pass through the same point, which is the centre of the tnscribed
circle.

DEM.—Draw two lines bisecting two of the angles, and from their inter-
section draw a line to the-other angle. Then show that the latter angle is
bisected. By (Ex. 4, page 134) this point is shown to be the centre of the in-
scribed circle. [The student should fill out the demonstration.]

0

AREAS OF SIMILAR FIGURES.

PROPOSITION VIIL

362. Theorem.—The areas of similar triangles are to each
other as the squares described on their homologous sides.

DemM.—Let ABC and DEF be any two similar triangles ; then is
area ABC : area DEF:: CB': FE :: AC : DF*:- AB': DE
For, place the largest angle of the triangle .
DEF, as D, on its equal angle A, of the triangle

C
¢ F ABC*; let E fall at E', F at F/, and draw
E’F’; then is triangle AE'F’ = DEF (284), and
H E'F’ is parallel to BC. Let fall a perpendicular
D from A to CB. Then Al is the altitude of AE'F’,
A8 £

and AH of ABC. Now, by similar triangles we
have CB:F'E'::AH : Al
But $AH: 3Al:: AH :Al; and, multiplying
corresponding terms, 3 AH x CB: 3Al x F’E’ :: AH":Al". Whence, since
$AH x CB = area ABC, and $Al x F’/E’ = area AE'F'= area DEF, and
AH:Al::CB:FE::AC:DF::AB:DE, or AR’ Al':: CB": FE :: AC' : DF"
:: AB':: DE'; we have
area ABC : area DEF ;;: CB: FE':: AC': DF':: AB': DE". Q. E.D.

Fia. 250.

PROPOSITION IX.

363. Theorem.—The areas of similar polygons are o each
other as the squares of the homologous sides of the polygons.

# The only object in taking the largest angle is to make the perpendicular fall within the
trisngle. Any two equal angles may be applied, and the demontkration \s exwentially the same.
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398. Cor—Through a given point in a line one plane can be
passed perpendicular to the line, and only one.

DEm.—Let D be the point in the line PD. Pass two lines through D, as EF,
and A’B’, each perpendicular to PD ; the plane of these lines is perpendicular w
PD. Moreover, the plane must contain both these lines, for if it passed through
D and did not contain DF, there would be one line of the plane, at least, which
-would pass through D and not be perpendicular to PD, which is impossible.
Hence, there can be no other plane than the plane of the two perpendiculars
EF and A’B’ which shall be perpendicular to PD, through D.

PROPOSITION VI,

399. Theorem.—If from the foot of a perpendicular toa plane
a line be drawn at right angles to any line of the plane, and this
wntersection be joined with any point in the
perpendicular, the last line s perpendicular to
the line of the plane.

DeM.—From the foot of the perpendicular PD let
DE be drawn perpendicular to AB, any line of the
plane MN, and E joined with O, any point of the per-
pendicular; then is OE perpendicular to AB.

Take EF =EC, and draw CD, FD, CO, and FO.
Now, CD = DF (?)*, whence CO = FO (?), and OE has
0 equally distant from F and C, and also E. There- Fie. 2600.
fore, OE is perpendicular to AB(f). Q. E.D.

400. Cor.—The line DE measures the shortest distance between
PpD and AB.

For, if from any other point in AB, as C, a line be drawn to D, ic is longer
than DE(?); and if drawn from C to @, any other point in PD than D, Ca is
longer than CD (%), and consequently longer than DE (?).

P

PARALLEL LINES AND PLANES.

401, A Line is Parallel to a plane when the two will
not meet, how far soever they be produced. The plane is also said
to be parallel to the line.

* Hereafter the reason will be often left out, and the mark (?) will be used to indicate that
the student is to supply it.
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OF PERIMETERS AND THE RECTIFICATION OF THE
CIRCUMFERENCE.

368. The Rectification of a curve isthe process of finding
its length.

The term rectification signifies making straight, and is applied as above,
under the conception that the process consists in finding a straight line equal
in length to the curve.

PROPOSITION X.

369. Theorem.—The perimeters of similar polygons are to
each other as their homologous sides, and as their corresponding
diagonals.

DeM.—Let a, b, ¢, d, etc., and A, B, C, D, etc., be the homologous sides
of two similar polygons whose perimeters are p and P; then p: P :: a
A::5: B:: ¢: C,etc.; and » and R being corresponding diagonals, p :
P::r: R Since the polygons are similar,a:A::5: B ::¢:C::d :D,
etc. By composition, (@+b+c+d+etc.) (orp): (A+B+C+D+ etc.)(orP): :a: A,
or as any other homologous sides. Also, as the homologous sides are to each
other as the corresponding diagonals (350), p: P ::7: R. Q. E. D,

370. Cor. 1.—The perimeters of regular polygons of the same
number of sides are to each other as the apothems of the polygons.

For the apothems are to each other as the sides of the polygons (351).

371. Cor. 2.—The circumferences of circles are to each other as
their radis, and as their diameters ; since they may be considered as
regular polygons of the same number of sides (352).

PROPOSITION XL

372. Theorem.—The circumference of a circle whose radius is
1, is 27, the numerical value of = being approzimately 3.1416.

DeM.—We will approximate the circumference of a
circle whose radius is 1, by obtaining, 1st, the perim-
eter of the regular inscribed hexagon; 2d, the perim-
eter of the regular inscribed dodecagon; 8d, the
perimeter of the regular inscribed polygon of 24 sides;
then of 48, etc.

In order to do this, let us find the relation between
the chord of an arc and the chordof § the arc ina
Fie. 252. circle whose radius is 1. Call the chord X wn arc e




" RECTIFIOATION OF CIRCUMFERENCE. 159

AB, (, and the chord of half the arc, as CB, ¢, Now, BDO is right angled at

D, whence BO® =BD" + DO (346), or DO = 4/ BO'—BD'. Butin the present
case BO = 1; hence DO =1/1—1(*. Taking DO from CO, we haveCD =1 —
V/T=31C* From the right angled triangle BDC we have CB (or ¢) =

v BD" + CD", or substituting } C for BD, and 1 — v/ T — 0 for CD, this re-

duces to c=4/9— ¥4_(z, or, [2—(4—-0’)‘]‘
By the use of this formula, we make the following computations :
No. sides. Form dconpnhﬂon Length of Side. Perimeter.
6. Bee (271) . . . . 1.00000000 6.00000000
12 c=4/3— ¥i—1=Va_ r or (2 3‘)‘ . = .51763809 621165708
% c={2-[4-(-3N) ]} =[2-(2+8)]} . = 26105288 6.26526722

8 o=@-{4-[3-(+o)]}')

{2—[2+(2+sl)*]l}l = .18080626 6.27870041
0. c=(2—{2+[2+(2+8) ]} . = .08543817 6.282068396
1. c=[2—(2+ {2+[2+(2+ 8] 08372346 6.28200510
884 o= {2—[2+(2+ {2+[2+(2+S) ) 01686228 6.28311544
788, e=(3—{2+[2+(2+ {2+[2+(2+8Y) ]} }1)} = 00818121 6.28316041

It now appears that the first four decimal figures do not change as the num-
ber of sides is increased, but will remain the same Aow far soever we proceed.
We may therefore consider 6.28317, as approzimately the circumference of a
circle whose radius is 1, ¢. 6., 27 = 6.28817, nearly ; and 7 = 8.1416, nearly.

373. ScE—The symbol x is much used in mathematics, and signifies,
primarily, the semi-circumference of a circle whose radsus ts 1. }m is therefore
a symbol for a quadrant, 90°, or a right angle. %7 is equivalent to 45°, ete.,
the radius being always supposed 1, unless statement is made to the contrary.
The numerical value of = has been sought in & great variety of ways, all of
which agree in the conclusion that it cannot be exactly expressed in decimal
numbers, but is approximately as given in the proposition. From the time of
Archimedes (287 B.C.) to the present, much ingenious labor has been bestowed
upon this problem. The most expeditious and elegant methods of approxi-
mation are furnished by the Caleulus. The following is the value of # extended
to fifteen places of decimals: 8.141592658589798.

PROPOSITION XIL

374. Theorem.~The circumference of -any circle is 2mr, r
being the radius.
Drx.— The circumfbrences of circles being to each ovher as Mk Todiy, v
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27 being the circumference of a circle whose radius is 1, we havc
2% : cirgf. : : 1 : r, whence ciref. = 2mr,

378. Cor—The circumference of a circls 18 wD, D being the
diameter, since 2ar = n2r = nD.

AREA OF THE CIRCLE.

PROPOSITION XIIL
376. Theorem.—The area of a circle whose radius i3 1, is .

DeM.—The area of a eircle is  » x circumference (328). When r = 1, cir-
oumference = 2x (372); hence
area of circle whose radius 81 = }x2x = . Q E.D.

PROPOSITION XIV.

377. Theorem.—The area of any circle is =1, r being the
radius.
DeM.—The areas of circles being to each other as the squares of their radii,
and 7z being the area of a circle whose radius is 1, we have
% : area of any circle :: 1* : 13,
whence area of any etrcle = mwr*. Q. E.D.

378. Cor.—The area of any sector is such a part of the area of
the circle as the angle of the sector is of four right angles.

379. ScH.—As the value of # cannot be exactly expressed in numbers, it
follows that the area cannot. Finding the area of a circle bas long been
known as the problem of Squaring the Circle, t.e., finding a square equal in area
to a circle of given radius. Doubtless many hare-brained visionaries or igno-
ramuses will still continue the chase after the phantom, although it has long
ago been demonstrated that the diameter of a circle and its circumference are
incommensurable. It is, however, an easy matter to conceive a square of the
same area as any given circle. Thus, let there be a rectangle whose base is
equal to the circumference of the circle, and whose altitude is half the radius;
its area is exactly equal to the area of the circle. Now, let there be a gquare
whose side is 8 mean proportional between the altitude and base of this rect-

angle; the area of the square is exactly equs) to the srea of We drde.
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EXERCISES.

1. Show that if a chord of a circle is conceived to revolve, varying
in length as it revolves, 8o as to keep its extremities in the circum-
ference while it constantly passes through a'fixed point, the rect-
angle of its segments remains constant.

2. The two segments of a chord intersected by another chord are
6 and 4, and one segment of the other chord is 3. What is the other
segment of the latter chord ?

3. Show how Prop’s I, IL, and IIL may be considered as differ-
ent cases of one and the same proposition.

Sua’s.—By stating Propositions I. and IL. thus, T%e distances from the snter-
section of thelines to their intersections with the circumference, what follows? In
Fig. 245, if the secant AO becomes a tangent, what does OD become ?

4. In a triangle whose sides are 48, 36, and 50, where do the bisec-
tors of the angles intersect the sides ?

5. In the last example find the lengths of the bisectors.

6. Review the examples under (111, 112, 113, 114), and
give the reasons.

7. In a circle whose radius is 20, what is the length of the arc of
a sector whose angle is 30°? What is the area of this sector ?

8. If a circle whose radius is 24 is divided into 5 equal parts by
concentric circumferences, what are the diameters of the several cir-
cles? If the radius is , and number of parts n?

9. Prob.—To divide a line in extreme and mean ratio ; that is,
80 that the whole line shall be to the greater segment, as the greater
segment 18 to the less.

SoruTION.—Let it be proposed to divide the line AB in extreme and mean
ratio. At one extremity of the line, as B, erect
a perpendicular equal to half the line, that is,
make BO =} AB. With O as a centre, describe
a circumference passing through B. Draw AO,
and take AC equal to AD. Then is AB divided
in extreme and mean ratio at C, so that AB:
AC:: AC:CB. To prove it, produce AO to E.
Now, AE : AB :: AB : AD (357), or by inver- A Cc’
sion, AB : AE :: AD : AB. By division, AB : Fio. 253.

AE — AB (= AE — DE) (or AD) (= AC):: AD (= AC) : AB — AD (= AB — AC)
(or CB). That is, AB : AC :: AC : CB.
11
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10. P2r0ob.—To inscribe a reqular decagon in a circle, and hence a.
regular pentagon, and regqular polygons of 20, 40, 80, efc., sides.

SoLuTiON.—Divide the radius in extreme and mean ratio, as at (@). Then is
the greater segment as the chord of
a regular inscribed decagon, as
ABCD, etc. To prove this, draw OA
and OB, andtsking OM = ac = AB,
a side of the polygon, draw BM.
Now, OA : OM :: OM : MA by con-
struction. As OM = AB, we have
OA : AB:: AB : MA. Hence, con-
: sidering the antesedents as belong-

Fro. 954 ing to the triangle OAB, and the
consequents to the triangle BAM
‘we observe that the two sides about the angle A, which is common to both tri-
:angles, are proportional, hence the triangles are similar (342). Therefore, ABM
is isosceles, since OAB is, and angle BMA — A = OBA, and MB = BA = OM
*This makes OMB also isosceles, and the angle O = OBM. Again the exterior
-angle BMA == O + OBM = 20; hence A, which equals BMA = 20. Hence also
OBA, which equals A, = 20. Wherefore O is } the sum of the angles of the
-triangle OAB, or } of 2 right angles, = 5 of 4 right angles. The arc AB is,
therefore the measure of v of 4 right angles, and is constquently 5 of the
rcircumference.

To construct the pentagon, join the alternate angles of the decagon. To
construct the regular polygon of 20.sides, bisect the arcs subtended by the sides
- +of the decagon, ete.

11. The projection of one line upon another in the same plane
i8 the distance between the feet of two perpendiculars let fall from:
the extremities of the former upon the latter. Show that this pro-
jection is equal to the square root of the difference between the
square of the line and the square of the difference of the perpen-
diculars.

12. Inthetriangle ABC, p being a perpendicular upon BA, prove that

c m+n(=c):a+dbiita—bim—n

a > State the fact as a proposition. Give the neces-
B sary modification when the perpendicular falls

A without the triangle.
Sva. a* — m? = — n?, whence a® — b* =m® — n?, ete.

13. The three sides of a triangle being 4, 5, and 6, find the seg-
ments of the last side, made by a perpendicular from the opposite
angle. Ans. 3.15, and 2.25.
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SECTION II.

OF SOLIDD ANGLES.

420. A Solid Angle iz the opening between two or more
planes, each of which intersects all the others. The lines of inter-
section are called Fdges, and the planes, or the portion of the planes
between the edges, where there are more than two, are called Faces.

421. A Diedral Angle, or simply a Diedral, is the opening
between ¢two intersecting planes.

422. A Polyedral Angle, called also simply a Polyedral, is
the opening between fhres or more planes which intersect so as to
have one common point, and only one. In the case of three inter-
secting planes the angle is called a 7riedral. The point common to
all the planes is called the Verfex. The plane angles enclosing a
polyedral are the Facial angles.

423. A Diedral (Angle) is measured by the plane angle included
by lines drawn in its faces from any point in the edge, and perpen-
dicular thereto. A diedral angle is called right, acute, or obtuse,
according as its measure is right, acate, or obtuse. Of course the

magnitude of a solid angle is independent of the distances to which
the edges may chance to be produced.

Irvr’s.—The opening between the two planes CABF and DABE is a Diedral

Cangle), AB is the
dge, and CABF

and DABE are the C
Paces. Let MO A
lie in the plane @

AF, perpendicular O

to the edge; and

WO in AE, and also F
perpendicular to. B E
the edge; then the

plane angle MON

is the measure of

the diedral. A diedral may be read by the letters on the edge, when there
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CHAPTER II,
SOLID GEOMETRY.*

SECTION I
OF STRAIGHT LINES AND PLANES.

PERPENDICULAR AND OBLIQUE LINES.

380. Solid Geometry is that department of geometry in
which the forms (or figures) treated are not limited to a single
plane.

381. A Plane (or a Plane Surface) is a surface such that a
straight line joining two points in it lies wholly in the surface.

IrL.—The surface of the blackboard is designed to be a plane. To ascertain
whether it is truly so, take a ruler with a straight edge, and apply this edge in
all directions upon it. If it always coincides, i. e., touches throughout its
whole length, the surface is a plane. Is the surface of the stove-pipe a plane?
Will a straight line coincide with it in any direction? Will it in every
direction ?

PROPOSITION L

382. Theorem.—Three points not in the same straight line
determine the position of a plane.

DeM.—Let A, B, and C be three points not in the same straight line; then
one plane can be passed through them, and only one; i. e., they determine the
position of a plane.

* In some respects, perhaps, ¢ Geomelry of Space’ is preferable to this term; but, as
neither is free from objections, and as this has the advantage of simplicity and long use, tke

author prefers to retain it.
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42%. Cor—Conversely, If one plane contain a line which is
perpendicular to another plane, the diedral is right.

Thus, if MO is perpendicular to the plane DB, C-AB-D is a right diedral.
For MO is perpendicular to every line of DB passing through its foot (?); and
hence is perpendicular to ON, drawn at right angles to AB. Whence C-AB-D is
a right diedral, for it is measured by a right plane angle.

PROPOSITION IL

428. Theorem.—If two planes are perpendicular to a third,
their intersection 1s perpendicular to the third plane.

DeM.—If CD and EF are perpendicular to the plane
MN, then is AB perpendicular to MN. For, EF being
perpendicular to MN, D-FG-E is a right diedral, and a
line in EF and perpendicular to FG at B is perpendicular
to MN; also a line in the plane CD, and perpendicular to
DH at B, is perpendicular to MN (?). Hence, as there
can be one and only one perpendicular to MN at B, and
as this perpendicular is in both planes, CD and EF, it is their intersection.
Q. E. D,

Fia. 218

PROPOSITION IIL

429. Theorem.—If from any point perpendiculars be drawn
Zo the faces of a diedral angle, their included angle will be the supple-
ment of the angle which measures the diedral, or equal to 4.

Den.—Let BD and AD be any two planes including the
diedral A-SD-B, then will two lines drawn from any point,
perpendicular to these planes, include an angle which is the ¢
supplement of the measure of the diedral, or equal to it.

If the point from which the lines are drawn is not in
the edge SD, we may conceive two lines drawn through
any point, as S, in this edge, which shall be parallel to the
two proposed, and hence include an equal angle, and
have their plane parallel to the plane of the proposed
angle (£16). Let the latter lines be SO and SP. We are
to show that OSP is supplemental to the measure of A-SD-B.
A plane passed through S, perpendicular to the edge SD,
will contain the lines SO and SP (388); and its intersec-
tions with the faces, as SB and SA, will form an angle
(ASB) which is the measure of the diedral (£23). Now, M
PSA = aright angle (?), and OSB = a right angle (?). Hence, Fre. 2T4.

PSA + OSB = 2 right angles. But PSA = ASO + OSP,

and OSB = BSP + OSP. Adding these, and noticing that BSP + OSP + ASO
= ASB, we have PSA + OSB = ASB + OSP = 2 right angles; 4. ¢., OSP is
the supplement of ASB, Again, P'SO=ASB (). Q. E D.
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PROPOSITION IL,

388. Theorem.—A line which is perpendicular to two lines of
a plane, at their intersection, 18 perpendicular to the plans.

DEM.—Let PD be perpendicular to AB and CF at D ; then is it perpendicular
to MN, the plane of the lines AB and CF.
Let OQ be any other line of the plane MN, passing
P, through D. Draw FB intersecting the three lines AB,
CF, and 0Q. Produce PD to P’, making P'D = PD,
and draw PF, PE, PB, P'F, P’E, and P'B. Then is
PF = P'F,and PB = P'B, since FD and BD are per-
pendicular to PP/, and PD = P'D (284). Hence, the
triangles PFB and P’FB are equal (292); and, if PFB
be revolved upon FB till P falls at P’, PE will fall in
P'’E. Therefore OQ has E equally distant from P and
P’, and as D is also equidistant from the same points,
0Q is perpendicular to PD at D (Z30). Now, as OQ
is any line, PD is perpendicular to any line of the
Fie. 226. plane passing through its foot, and consequently per-
pendicular to the plane (387). Q. E. .

389. Cor—If one of two perpendiculars revolves about the other
as an azis, 1t8 path is a plane perpendicular to the axis.
Thus, if AB revolves about PP'as an axis, it describes the plane MN.

PROPOSITION IIL

390. Theorem.—At any point in a plans one perpendicular
can be erected to the plane, and only one. -

DeyM.—Let it be required to show that one perpen-
dicular, and only one, can be erected to the plane
MN at D. Through D draw two lines of the plane,
as AB and CE, at right angles to each other. CE
being perpendicular to AB, let & line be conceived as
starting from the position ED to revolve about AB as
an axis. It will remain perpendicular to AB (389).
Conceive it to have passed to P'D. Now, as it con-

Fre. 227 tinues to revolve, P'DC diminishes continuously, and

at the same rate as P’DE grows greater; hence, in

one position of the revolving line, and in only one,as PD, PDE will equal

PDC, and PD will be perpendicular to CE. Therefore, PD is perpendicular to

two lines of the plane, at their intersection, and is the only line that can be

thus perpendicular, whence it is perpendicular to the plane (388), and is the
only perpendicular. Q. B. D.




"DExm.—Tiis propesitin needs démomstration only in
case of the sum of 4 two smaller facial angles as com-
pared with the greatest (). Let ASB and BSC each be less
than ASC; then is A8B + BSC > ASC. For, make the an-
gle ASH' = ASB, and S¥' = Sb, and pass a plane through &
and %', cutting SA and SCin @ and ¢. The two triangles aSb
and aSl’ are equal (f), whence ab’ = ab. Now, ad + bec > ac
(1), and subtracting @b from the first member, and its equal
ab’ from the second, we have b¢ > d'c. Whence the two tri-
angles 5S¢ and 3’'Sc have two sides equal, but the third side
b > than the third side 'c, and consequently angle Sc >
¥Sc. Adding ASB to the former, and its equal ASY to the
Iatter, we have ASB + BSC > ASC. q. E.D.

179

435. Cor.—The difference between any two facial angles of a

iriedral vs less than the third facial angle (?).

PROPOSITION V.

436. Theorem.—The sum of the facial angles of a triedral

~®nay be anything between 0 and four right angles.

Dru.—Let ASB, BSC, and ASC be the facial angles
vencloesing a triedral; then, as each must have some value,
~the sum is greater than 0, and we have only to show that

ASB + ASC + BSC < 4 right angles. Produce either
edge, as AS, to D. Now, in the triedral $-BCD, BSC
<:BSD + CSD. To each member of this inequality add
ASB + ASC, and we have

ASB + ASC + BSC < ASB + ASC + BSD + CSD. A

But, ASB + BSD = 2 right angles (?), and ASC + CSD =
2 right angles; whence ASB + ASC + BSD + CSD =
4 right angles; and consequently, ASB + ASC + BSC <
4 right angles, Q. E. D.

PROPOSITION VL

Fre. 278

437, Theorem.— Two iriedrals having the faeizl cagles of the
one equal to the facial angles of the other, each to each, and similarly

arranged, are equal.
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395, Cor. 3.—Also, conversely, Equal oblique lines from the
same point in the perpendicular, pierce the plane at equal distances
Jfrom the foot of theperpendicular.

DEM.—Let PE’ = PE"”; then is DE' = DE”. For, let PDE’ revolve upon PD
until E'D falls in E"D ; then, if DE’ were less than DE”, PE’' would be less than
PE"; and, if DE’ were greater than DE", PE’ would be greater than PE’’, But
both of these conclusions are contrary to the hypothesis. Hence, as DE’ can
neither be less nor greater than DE”, it must equal it. This corollary follows
also from (297).

396. Cor. 4.—The perpendicular is the shortest line that can le
drawn to a plane from a point without, and measures the distance of
the point fromn the plane.

PROPOEITION V.

397. Theorem.—From a point without a plane one perpendic-
ular can be drawn to the plane, and only one.

DeM.—Let it be required to show that one perpen-
dicular can be drawn from P to the plane MN, and
only one. Take AB, any line of the plane, and con-
ceive PD' perpendicular to it. Through p’ draw EF,
a line of the plane, perpendicular to AB. Now, if
PD’E = PD'F, they are both right angles, and PD’ is
perpendicular to two lines of the plane passing through
its foot, and hence perpendicular to the plane (388).
If, however, PD’E does not equal PD’F, in the first in-
stance, but PD'’F < PD'E, conceive the line AB to
move along the plane, continuing parallel to its
primitive position, so as to cause D’ to move towards F, thus diminishing PD'E
- and increasing PD’F. At the same time observe that, if necessary in order to
keep PD'A = PD’B*, EF can move along the plane parallel to its first position.
Now, as PD'F increases, passing through all successive values, and PD’E dimin-
ishes in the same way, there will be some position of PD’, as PD, in which

PDF = PDE, and as by hypothesis PDA’ remains = PDB’, PD becomes perpen-
- dicular to two lines passing through its foot, and hence perpendicular to the
plane.
That there can be only one perpendicular is evident, since, if there were two,
-a8 PD’ and PD, there would be two right angles in the triangle PD’D.

Fra. 259.

* According to the conception here used it would nof be necessary.
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of the diedrals of S-ABC. We are now to show that the facial angles of
S-ABC are supplements of the diedrals of S-EDF; +. ¢., that ASB is the sup-
plement of D-SE-F, BSC of E-SD-F, and ASC of D-SF-E. Since SE is by hy-
pothesis perpendicular to ASB, it is perpendicular to AS (38%7); and since SF
is perpendicular to ASC, it is perpendicular to AS (38%). Hence AS is per-
Pendicular to the face FSE (?). In like manner we may show that SB is per-
pendicular to DSE, and SC to DSF ; whence it follows from the preceding part
of the demonstration, or directly from (£29), that angle ASB is the supple-
ment of D-SE-F, BSC of E-SD-F, and ASC of D-SF-E,

438a. Sca—If any edge of S-EDF, as DS, is produced beyond S, another
triedral is formed which has its edges perpendicular to the faces of S-ABC.
Thus in all 4 triedrals can be formed with their edges perpendicular to the faces
of S-ABC; but the proposition holds only for S-EDF.

PROPOSITION VIIL :

439. Theorem.—The sum of the diedrals of a triedral may be
@nything between two and siz right angles.

DeM.—Each diedral being the supplement of a plane angle of the supple-
xmentary triedral, the sum of the three diedrals is 3 times 2 right angles, or
& right angles — the sum of the angles of the supplementary triedral. But this latter
=mum may be anything between 0 and 4 right angles (f). Hence the sum of the
«iedrals may be anything between 2 and 6 right angles. Q. E. D.

PROPOSITION IX,

440. Theorem.—An isosceles triedral and its sym-
melrical triedral are equal.

DeM.—Let S-ABC be an isosceles triedral with the facial angle
ASB = BSC; then is it equal to its symmetrical triedral S-abe.

For, revolve S-abec about S until Sb falls in SB, and bring the
plane Sba into the plane SBC ; then, since the diedrals C-SB-A and
aSb-c are opposite, they are equal (£25),* and the plane Sbc will
fall in SBA. Moreover, Sa will fall in SC, since angle BSC = ASB
(by hypothesis) = #Sa (vertical to ASB). In like manner S¢ will
fall in SA, and the triedrals will coincide, and are therefore equal.
Q E. D. Kie. 281

441. Sce.—If angle ASB is not equal to BSC, it is easy to see that the ap

* Shonld the pupil have difficulty in perceiving this, let him notice that CSB and ¢Sb ure
parts of one and the same plane ; and ASB and aSb are parts of another. Now 5B is the inter.
section of these planes, and the diedrals mentioned are on opposite sides of this line of inten
section.
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PROPOSITION VIL

402, Theorem.—O0ne of two parallel lines is parallel to every
Pplane containing the other.

Dru.—AB being parallel to CD is parallel to
: H any plane MN containing CD.

_______—-——-D Since AB and CD are in the same plane (),
c and as the intersection of their plane with MN is
N CD (?), if AB meets the plane MN, it must meet
Fra. 961. it in CD, or CD produced. But this is impossi-
ble (). Whence AB is parallel to MN. Q. E. p.

403. Cor. 1. Through any given line a plane may be passed
parallel to any other given line not in the plane of the frst.

For, through any point of the line through which the plane is to pass, con-
ceive a line parallel to the second given line, The plane of the two intersecting
lines is parallel to the second given line (?).

B
A T
M_e i

404. Cor. 2—Through any point in space a plane may be passed
parallel to any two lines in space.

For, through the given point, conceive two lines parallel to the given lines;
then isithe plane of these intersecting lines parallel to the two given lines (?).

PROPOSITION VIIL

4085. Theorem.—If one of two parallels 1s perpendicular to a
Plane, the other i3 perpendicular also.

DeM.—Let AB be parallel to CD, and perpendicular to the plane MN ; then

is CD perpendicular to MN.
For drawing BD in the plane MN, it is perpendicular
A C to AB(?), and consequently to CD (?). Through D draw

EF in the plane and perpendicular to BD, and join D
with any point in AB, as A; then is EF perpendicular
to AD (?). Now, EF being perpendicular to two lines, AD
and BD ofthe plane ABDC, is perpendicular to the plane,
and hence to any line of the plane passing through D,
as CD. Therefore CD is perpendicular to BD and EF,
Fia 263. and cousequently to the plane MN(?). Q. E. D.

406. Cor. 1.—Two Ulines which are perpendicular to the same
plane are parallel. .

Thus, AB and CD being perpendicular to the plane MN, if AB is not parallel
to CD, draw a line through B which shall be. By the proposition this line is
perpendicular to MN, and hence must coincide with RS (398).
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sides, the edges of one triedral may be produced, forming the symmetrical tri-
edral, to which the other given triedral may be applied. [Let the studemt con-
struct figures, and go through with the application.]

PROPOSITION XIL

44%. Theorem.—Two iriedrals which have two diedrals and
the tncluded facial angle equal, are equal, or symmetrical and equiva-
lent.

DEM.—[Same a8 in the preceding. Let the student draw figures like those
for the preceding, and go through with the details of the application.]

448. Cor.—1It will be observed that sn equal or 1n symmetrical
2riedrals, the equal facial angles are opposite the equal diedrals.

PROPOSITION XIIIL.

449. Theorem.—Two triedrals which have two facial angles
af the one equal to two facial angles of the other, each to each, and tha
<wncluded diedrals unequal, have the third facial angles unequal, and

Zhe greater facial angle belongs to the triedral having the greater in-
cluded diedral.

DeEM.—Let ASC = asc, aud ASB = asb,
while the diedral C-SA-B > ¢-sa-b: then CSB
> csb.

For, make the diedral C-SA- = c-sa-b: and
taking ASo = asd, bisect the diedral 0-SA-B with
the plane ISA. Draw ol and oC, and conceive
the planes 0S| and 0SC. Now, the triedral
S-AoC = s-abe, since they have two facial angles
and the included diedral equal (446). For a
like reason S-Alo = S-AIB, and the facial angle
oSl = ISB. Again, in the triedral S-loC, 0S| +

oISC > oSC (434), and substituting ISB for ¢Sl, we have ISB + ISC (or BSC) >
oSC, or its eqan bsc. Q. E.D.

450. Cor—Conversely, If the two facial angles are equal, each to
each, in the two triedrals, and the third facial angles unequal, ths
diedral opposite the greater facial angles is the greater.

That is, if ASB = ash, and ASC = asc, while BSC > dsc, the diedral B-AS-C
> base. For, if B-AS-C = b-as-c, BSC = bsc (446), and if B-AS-C < b-as-,

BSC < bec, by the proposition. Therefore, as B-AS-C cannot be equal to nor
less than b-as-c, it must be greater.
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PROPOSITION XIV.

451. Theorem.—Two triedrals which have the thres facial
angles of the one equal to the three facial angles of the other, each o
each, are equal, or symmetrical and equivalent.

Dem.—Let A, B, and C represent the facial angles of one, and 4, 5, and ¢ the

corresponding facial angles of the other. If A =

a,B = b,and C = ¢, the triedrals are equal. For A

being equal to ¢, and B to b, if, of their included die-

drals, SM were greater than sm, C would be greater

than ¢; and if diedral SM were less than diedral

sm, C would be less than ¢, by the last corollary.

A y,  Hence, as diedral SM can neither be greater nor

o n less than diedral sm, it must be equal to it. For like

Fre. 984, reasons, diedral SN = diedral sn, and diedral SO

= diedral so. Therefore, the triedrals are equal,

or symmetrical, according to the arrangement of the faces. Thus, if SN and e

are both considered as lying on the same side of the planes MSO and mso, the

triedrals are equal; but, if one lies on one side and the other on the opposite

side of those planes (SN in front, and sn behind, for example), the diedrals are
symmetrical, and hence equivalent.

PROPOSITION XV,

452. Theorem.—Two triedrals which have the three diedrals

of the one equal to the three diedrals of the other, each to each, are
equal, or symmetrical and equivalent.

DEeM.—In the two supplementary triedrals, the facial angles of the one will be
equal to the facial angles of the other, each to each, since they are supplements
of equal diedrals (£38). Hence, the supplementary triedrals are equal or
equivalent, by the last proposition. Now, the facial angles of the first triedrals
are supplements of the diedrals of the supplemeuntary; whence the correspond-*
ing facial angles, being the supplements of equal diedrals, are equal. Therefore,
the proposed triedrals have their facial angles equal, each to each, and are con-
sequently equal, or symmetrical and equivalent. Q. E. D.

453. Cor—All trirectangular triedrals are equal.

454, Scr.—The proof that two forms are equal, includes the fact that cor-
responding parts are equal.
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mutually equilateral, and A, opposite ED, is equal to A’, opposite E'D’ equal
to ED. .

Again, the plane of the angle BAC, MN, is parallel to PQ, the plane of B'A’C".
For, let & plane be passed through AC and revolved until it is parallel to PQ.
It must cut DD, which is parallel to AA’, and EE’, so that DD’ shall equal AA’'
and EE’ (?); hence it must pass through D.

417%. Cor. 1.—If two intersecting planes be cut by parallel planes,
the angles formed by the intersections are equal.

Thus, AB’ and AE’ being cut by the parallel planes MN and PQ, AD is parallel to
A'D’ (?), and lies in the same direction, and AE to AE’. Hence BAC= B'A’C’ ().

418. Con. 2—If the corresponding exiremities of three equal
parallel lines not in the same plane, be joined, the triangles formed
are equal, and their planes parallel.

Thus, if AA’ = DD’ = EE’, the sides of the triangle AED are equal to the
sides of A’E'D’, since the figures AD’, DE’, and EA’ are parallelograms (?), and
the corollary comes under the proposition (?).

PROPOSITION XIIL

419. Theorem.—The corresponding seg-
ments of lines cut by parallel planes are propor-
tional.

DeM.—Let AB, CD and EF be cut by the parallel planes
MN, PQ, RS, and TU; then Az : Ce::ab:¢f :: B : fD, P
and Aa: Ei::ab:7k :: 0B : kF, and Ce: E¢ :: ¢f : ¢k ::
JD : kF.

For, join the extremities A and D, and E and D, and
conceive the intersections of the plane of AB and AD
with the parallel planes to be BD, bd, and ac. These
lines are parallel (?), and Ac:Ac::ad:cd:: 5B :dD (7).
For a similar reason, Ce : Ac :: ¢f : ed :: fD: dD (7).
‘Whence, the consequents of the proportions being the T
same, the antecedents give Aa: Ce::ab:ef :: B : fD.
In like manner we can show that Ce: E¢:: ¢f: ¢k :: fD:
kF. [Let the student give the details.] From these
proportions we have Aa : E¢ ::ab : ¢k :: 0B : kF (?). F1a. 968.
Q E.D.

EXERCISES.
1. Designate any three points in the room, as one corner of the
desk, a point on the stove, and some point in the ceiling, and show
how you can conceive the plane of these pointa.
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2. Show the position of two lines which will not meet, and yet are
not parallel.

3. Conceive two lines, one line in the ceiling and one in the floor,
which shall not be parallel to each other. What is the shortest dis-
tance between these lines?

4. The ceiling of my room is 10 feet above the floor. I have a 12
foot pole, by the aid of which I wish to determine a point in the floor
directly under a certain point in the ceiling. How can I do it ?

8va.—Consult Prop. IV.

5. Upon what principle in this section is it that a stool with three
legs always stands firm on a level floor, when one with four may
not ?

6. By the use of two carpenter’s squares you can determine a per-
pendicular to a plane. How is it done ?

7. If you wish to test the perpendicularity of a stud to a level floor,
on how many sides of it is it necessary to measure the angle which it
makes with the floor? By applying the right angle of the carpen-
ter’s square on any two sides of the stud, to test the angle which it
makes with the floor, can you determine whether it is perpendicular
or not ?

8. We see in straight lines. If a line* be placed between onr eye
and a surface, it covers a certain space on the surface; this figure or
gpace is said to be the projection of the line on that surface. Upon
what principles in this section is it that the projections of straight
lines are straight ? Why is it that the projections of parallels which
are parallel to the plane upon which we see them projected, are
parallel, while parallel lines which are inclined to this plane are pro-
jected in oblique lines?

9. If a line is drawn at an inclination of 23° to a plane, what is
the greatest angle which any line of the plane, drawn through the
point where the inclined line pierces the plane, makes with the line ?
Can you conceive a line of the plane which makes an angle of 50°
with the inclined line? Of 80°? Of15°? Of 170°?

Hereafter,the student should make the synopses.

" - =~allnquial sense, and refers to a material representatios
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SECTION 1II.
OF PRISMS AND CYLINDERS.

457. A Prism is a solid, two of whose faces are equal, parallel
polygons, while the other faces are parallelograms. The equal par-
allel polygons are the Bases, and the parallelograms make up the
Lateral or Convex Surface. Prisms are triangular, quadrangular,
pentagonal, etc.,, according to the number of sides of the polygon
forming a base.

458. A Right Prism is a prism whose lateral edges are per-
Pendicular to its bases. 4n Obléique prism is a prism whose late-
ral edges are oblique to its bases.

. 459. A Regular Prism is a right prism whose bases are
Tregular polygons; whence its faces are equal rectangles.

460. The Altitude of a prism is the perpendicular distance
between its bases : the altitude of a right prism is equal to any one
©Of its lateral edges.

461. A Truncated Prism is a portion of a prism cut off by
& plane not parallel to its base. A section of a prism made by a plane
Yerpendicular to its lateral
«dgesiscalled a Right Section.

IrvL’s.—In the figure, (&)
and (b) are both prisms:
(@) is oblique and (®) right.
PO represents the altitude
of («); and any edge of F
(b), as 3B, is its altitude.
ABCDEF, and abedgf, are
lower and upper bases,
respectively. Either por-
tion of (b) cut off by an
oblique plane, as a'd'c'd'é,
is a truncated prism. F1a, 268.

462. A Parallelopiped is a prism whose bases are parallel-
ograms: its faces, inclusive of the bases, are consequently all parallel-



188 ELEMENTARY SOLID GEOMETRY.
ograms. If itg faces are all rectangular, it is a recfangular paralle-
opiped.

463. A Cube is a rectangular parallelopiped whose faces are =l
equal squares,

PROPOSITION L

464. Theorem.—Parallel plane sections
of any prism are equal polygons.

DeM.—Let ABCDE and abede be parallel sections of
the prism MN ; then are they equal polygons.

For, the intersections with the lateral faces, as ab
and AB, etc., are parallel, since they are intersections
of parallel planes by a third plane (£10). Moreover,
these intersections are equal, that is, ab = AB, b¢ = BC,
ed = CD, etc., since they are parallels included between
parallels (242). Again, the corresponding angles of
these polygous are equal, thatis,a =A,5=8B,¢=_C,
etc., since their sides are parallel and lie in the same
direction (#16). Therefore the polygons ABCDE, and
abede, are mutually equilateral and equiangular; that

Fie. 280. is, they are equal. Q E. D.

465. Cor.—Any plane section of a prism, parallel to its base, is
equal to the base ; and all right sections are equal.

PROPOSITION II.

466. Theorem.—If three faces including a triedral of one prism
are equal respectively to three faces including a triedral of the other,
and similarly placed, the prisms are equal.

DeM.—In the prisms Ad, and A’d’,
let ABCDE equal A’'B'C’'D’'E’, ABba =
A'B'V«, and BCeb = B’C’¢’¥/; then are
the prisms equal.

For, since the facial angles of the
triedrals B and B’ are equal, the trie-
drals are equal (£517), and being ap-
plied they will coincide. Now, con-
ceiving A’d’ as applied to Ad, with B’
in B, since the bases are equal poly-
gons, they will coincide throughout ;

Fie. 290, and the faces aB and e’'B’ will also
coincide. Whence, as a'¥’ falls in ab,
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427%. Con—Conversely, If one plane contain a line which is
perpendicular to another plane, the diedral is right.

Thaus, if MO is perpendicular to the plane DB, C-AB-D is a right diedral.
For MO is perpendicular to every line of DB passing through its foot (?); and
hence is perpendicular to ON, drawn at right angles to AB. Whence C-AB-D is
s right diedral, for it is measured by a right plane angle.

PROPOSITION II.

428. Theorem.—If two planes are perpendicular to a third,
their intersection 18 perpendicular to the third plane.

DeM.—If CD and EF are perpendicular to the plane
MN, then is AB perpendicular to MN. For, EF being
perpendicular to MN, D-FG-E is a right diedral, and a
line in EF and perpendicular to FG at B is perpendicular
to MN; also a line in the plane CD, and perpendicular to
DH at B, is perpendicular to MN (?). Hence, as there
can be one and only one perpendicular to MN at B, and

Fia. 378
as this perpendicular is in both planes, CD and EF, it is their intersection.

Q.E. D,

PROPOSITION IIL

429. Theorem.—If from any point perpendiculars be drawn
to the faces of a diedral angle, their included angle will be the supple-
ment of the angle which measures the diedral, or equal to 4.

DEnM.—Let BD and AD be any two planes including the
diedral A-SD-B, then will two lines drawn from any point,
perpendicular to these planes, include an angle which is the ¢
supplement of the measure of the diedral, or equal to it.

If the point from which the lines are drawn is not in
the edge SD, we may conceive two lines drawn through
any point, as S, in this edge, which shall be parallel to the
two proposed, and hence include an equal angle, and
have their plane parallel to the plane of the proposed
angle (£16). Let the latter lines be SO and SP. We are
to show that OSP is supplemental to the measure of A-SD-B.
A plane passed through S, perpendicular to the edge SD,
will contain the lines SO and SP (388); and its intersec-
tions with the faces, as SB and SA, will form an angle
(ASB) which is the measure of the diedral (£23). Now, M
PSA = aright angle (?), and OSB = a right angle (?). Hence, Fie. oT4.

PSA + OSB = 2 right angles. But PSA = ASO + OSP,

and OSB = BSP + OSP. Adding these, and noticing that BSP + OSP + ASO
= ASB, we have PSA + OSB = ASB + OSP = 2 right angles; §. ¢., OSP i
the supplement of ASB, Again, P'SO=ASB (). Q. ® D.
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A. a

PROPOSITION V.

471. Theorem.—The diagonals of a parallslopsped bisect each
other.

DEM.—Pass a plane through two opposite edges,
as 5B and dD. 8ince the bases are parallel, 3 and
BD will be parallel (£10), and $BDd will be a paral-
lelogram. Hence, D and dB are bisected at o (7).
For a like reason, passing a plane through de and AB,
we may show that dB and cA bisect each other, and
hence that cA passes through the common centre of
dB and 3D. 8o also aC is bisected by 3D, as appears
from passing a plane through b and DC. Hence, all
the diagonals are bisected at . Q. E. D.

] B¥], LA

Fic. 208,

47 2. Cor.—Thediagonals of a reciangular parallsloptped aresgual. -3

PROPOSITION VL

473. Theorem.—A parallelopiped is divided into two equiva- — ==

lent triangular prisms by a plane passing through tts diagonally <&
oppostte edges. -
Dexm.—Let H-ABCD be a parallelopiped, dividediESm-en(
L through its diagonally opposite edges FA and HCg ==
then are the triangular prisms H-ABC, and L-ADC—»C
equivalent.

For this parallelopiped is equivalent to a righ®s _echt
parallelopiped having a right section Abed for its base, ==,
and AF for its edge (£89), ¢. ., H-ABCD is equiva— =2
lent to A-Abed. For the snme reason the abliques mcie
triangular prism H-ABC is equivalent to the righs et
triangular prism %-Abc; and L-ADC is equivalen®r st
to LAde. But h-Abc is equal to A-Ade, as they<e==Y

Fie. 204, are right prisms with equal bases (467) and 2 com- .s—®"
mon altitude. Hence, H-ABC is equivalent to L-ADC =%,
w8 they are equivalent to two equal priems. q. E. D.

PROPOSITION VIL

474. Theorem.—Any parallelopiped is equivalent o a rectan——
gular parallelopiped having an equivalent base and the same altstude—
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Deu.—Let H-ABCD be any parallelopiped
with all its faces obliqne. 1st. By making the
right section adHe, and completing the paral-
lelopiped adHebeGf, we have an equivalent right
panallelopiped (£69). 2d. Through the edge
& of this right parallelopiped make the right
section ea'd’f and complete the parallelopiped
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ea'b'fHd'¢'G, and we have a rectangular paral-
lelopiped ' equivalent to the one previously
formed (469), and hence equivalent to the
given one. Now, the base of this rectangular
parallelopiped, ¢. e,, a'b'¢'d’, is equal to abed (?),

Fre. 205.

which in turn is equivalent to ABCD (?). Moreover, the altitude of the
rectangular parallelopiped is the same as that of the given one, since their
bases lie in the same parallel planes Ac’ and EG. Therefore, the parallelopiped
H-ABCD is equivalent to the rectangular parallelopiped H-a'd’¢’d’, which

has an equivalent base and the same altitude. Q E. D.

PROPOSITION VIIL

478. Theorem.—The area of the lateral surface of a right
presm 18 equal to the product of ils altitude tnio the perimeter of

eis base.

Dru.—The lateral faces are all rectangles, having for their common alti-
tmde the altitude of the prism (£#60). Whence the area of any face is the

product of the altitude into the side of the base which
forms its base; and the sum of the areas of the faces
is the common altitude into the sum of the bases of
the faces, that Is, into the perimeter of the base of
the prism. Q. E.D.

476. A Cylindrical Surface is a sur-
face traced by a straight line moving so as to
remain constantly parallel to its first position,
while any point in it traces some curve. The
moving line is called the Qeneratriz, and the
curve traced by a point of the line is the
Directriz.

Fie. 908.

ILr.—8uppose a line to start from the position AB, ana move ‘owards M in
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such a manner as to remain all the time parallel to its first position AB,
while A traces the curve A128456 ----M. The surface thus traced is a Oiin
drical Surface; AB is the Generatriz, and the curve ANM the Direciriz.

477. A Circular Cylinder, called also a Cylinder of Revolu-
tion, is & solid generated by the revolution of a rectangle around one
of its sides as an axis.

IrLn.—Let COAB be a rectangle, and conceive it re-
volved about CO as an axis, taking successively the
positions COA’B’, COA”B”, etc. ; the solid generated isa
Circular Cylinder, or a cylinder of revolution. The re-
volving side AB is the generatrix of the surface, and
the circumference OA (or CB)is the directrix. This is
the only cylinder treated in Elementary Geometry, and
is usually meant when the word Cylinder is used without
specifying the kind of cylinder. .

478. The Auxis of the cylinder is the fixed
gide of the rectangle. The side of the rectangle
opposite the axis generates the Convez Surface;
while the other sides of the rectangle, as OA and
CB, generate the Buses, which in the cylinder of
revolution are circles. Any line of the surface corresponding to
some position of the generatrix is called an Element of the surface.

Fi1e. 297,

479. A Right Cylinder is one whose elements are perpen-
dicular to its base. In such a cylinder any element is equal to the
sxis. A Cylinder of Revolution (477) is right.

480. A prism is said to be inscribed in a cylinder, when the bases
of the prism are inscribed in the bases of the cylinder, and the edges
of the prism coincide with elements of the cylinder,

PROPOSITION IX,

481. Theorem.—The area of the convex surface of a cylinder
of revolution 1is equal to the product of its axis inio the circumfer-
ence of its base, i. e, 2nRH, H deing the axis and R the radius of
the base.

Cumine .
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DeM.—Let a right prism, with any regular polygon for
its base, be inscribed in the cylinder, as k-abedef, in the
cylinder whose axis is HO. The area of the lateral surface
of the prism is HO (= %b) into the perimeter of its base,
.6, HO x (ab + bc + ¢d + de + ¢f + fa). Now, bisect the
arcs ab, be, etc., and inscribe a regular polygon of twice the
number of sides of the preceding, and on this polygon as
a base construct the right inscribed prism with double the
number of faces that the first had. The area of the lateral
surface of this prism is HO x the perimeter of ils base. In
like manner conceive the operation of inscribing right
prisms with regular polygonal bases continually repeated;
it will always be true that the area of the lateral surface
is equal to HO x the perimeter of the base. But the circum-
ference of the base of the cylinder is the limit toward
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Fi1o. 208.

which the perimeters of the inscribed polygons forming the bases of the prisms
constantly approach, and the convex surface of the cylinder is the limit of the
lateral surface of the inscribed prism. Therefore, the area of the convex sur-
face of the cylinder is HO into the circumference of the base. Finally,if R is
the radius of the base, 27R is its circumference. This multiplied by H the
altitude, ¢. ¢, H x 2zR, or 27RH, is the area of the convex surface of the

cylinder.

PROPOSITION X.

482. Theorem.—The volume of a rectangular parallelopiped
18 equal to the product of the three edges of one of its triedrals.

Dem.—Let H-CBFE be a rectangular paral-

lelopiped. 1st. Suppose the edges commen- c AL
surable, and let BC be 5 units in length, BA
4,and BF 7. Now conceive a cube, as d-f3Bg.
whose edge is one of these linear units. This /
cube may be used as the unit of volume. Con- | D —r—r—rr ot ta
ceive the parallelopiped O-caBb, whose length T N
is 7, and whose edges ca and cb are 1 (the A . A
linear unit of measure assumed). This paral- P // —- VA /
lelopiped will contain as many of the units E
of volume as there are linear units in BF: Fia. 200.
we suppose 7. Again, conceive the paral-

This

lelopiped whose base is ECBF and altitude PE, one of the linear units.

parallelopiped will contain as many of the former as there are linear units in
BC: we suppose 5. Hence this last volume is 5 x 7 =35. Finally, there will

12
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be as many times this number of units of volume in the whole parallelopiped
as AB contains linear units, or 4 x 85 = 140. Hence, when the edges are
commensurable, the volume is the product of the three edges including a
triedral.

2nd. When the edges are not commensurable, we reach the same conclusion
by taking successively a smaller and smaller linear unit. ' Thus, for a first
approximation take some aliquot part of one edge, a8 145 of FB. Now, by hypo-
thesis this is not contained an exact number of times in BC, nor in BA. Bat
eonceive it as applied to BC as many times as it can be; the remainder will be
less than 5 FB. In like manner conceive it applied to AB. The volume of the
parallelopiped included by these edges will be measured by the product of the
edges. Now conceive the linear unit smaller. The unmeasured portion will
be less. Thus, by supposing the linear unit to diminish indefinitely, we see that
tt will always remain true that the measure is the product of the three edges ‘
forming a triedral.

483, Cor. 1.—The volume of a cube s the third power of its 1
edge.
484, ScH.—This fact gives rise to the term cube, as used in arithmetic and E

algebra, for ¢ third power.”

485, Cor. 2—The volume of a rectangular parallelopiped 1s 27
equal to the product of its altitude into the area of its base, the linear -y
unit being the same for the measure of all the edges.

486. Cor. 3.—The volume of any parallelopiped 18 equal to the = <%
product of its altitude and the area of its base.

For any parallelopiped is equivalent to a rectangular parallelopiped having == g
an equivalent base and the same altitude (£74).

487. Cor. 4.— Parallelopipeds of the same or equivalent bases ars w=—<
to each other as their alittudes, and those of the same altitudes are to €«
each other as their dases. And, in general, parallelopipeds are to <=0
each other as the products of their bases and altitudes.

PROPOSITION XL

488. Theorem.— The volume of any prism is equal to the pro-
duct of its altitude into its base.
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Dem.—1st. Let E-ABD be a triangular prism. Com-
Pplete the parallelopiped E-ABCD. Then is E-ABD =
4+ E-ABCD (473). But the volume of E-ABCD is
equal to its altitude into its base; hence the volume
of E-ABD is equal to its altitude into $ ABCD, or
ABD.

2d. Any prism may be divided into partial, tri-
sngtlar prisms, by passing planes through one edge
;and all the other non-adjacent edges, as in the figure.
et H be the altitude of the whole prism, then is it
#lko the common altitude of the partial prisms. Now,
the volume of each triangular prism is H into its
base; hence, the sum of the volumes is H into the
sttm of the bases, Z.6., H into the base of the whole
prism.

489, Cor. 1.—The volums of a right prism
18 eqiual. to the product of its edge into tis
base.

490. Cor. 2.—Prisms of the same altitude
are to each other as their bases ; and prisms
of the same or equivalent bases are to each
other as their altitudes; and, in general,
prisms are lo each other as the products of
thetr bases and altitudes.

PROPOSITION XII.

F1a. 800.

491. Theorem.—The volume of a cylinder of revolution is
equal to the product of its base and altitude, i. e., xR*H, H being the

altitude and R the radius of the base.

DeM.—Inscribe any regular right prism in the cylinder,
88 in (#81). 'The volume of this prism is equal to the
product of its base and altitude; and this continues to be
the fact as the number of sides of the polygon forming the
base is successively doubled, and the prism approaches
equality with the cylinder. Hence, as the volume of the
prism is always equal to the product of its base and alti-
tude, and as the altitude of the prism remains equal to the
sltitude of the cylinder, this fact is true when the number
of the sides of the base of the prism is infinitely multiplied ;
whence the volume of the cylinder is equal to the product
of its bdse and altitude. Now, R being the radius of the
base, the area of the base is 7R? (?) : hence, the volume of
the cylinder is equal to zR*H.

Fie. 301.
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PROPOSITION XIV.

451. Theorem.—Two iriedrals which have the three facial
angles of the ons equal to the three facial angles of the other, each to
each, are equal, or symmetrical and equivalent.

DenM.—Let A, B, and C represent the facial angles of one, and 4, b, and ¢ the
corresponding facial angles of the other. If A =
S . a,B = b,and C = ¢, the triedrals are equal. For A
being equal to @, and B to b, if, of their included die-
drals, SM were greater than sm, C would be greater
than ¢; and if diedral SM were less than diedral
#m, C would be less than ¢, by the last corollary.
A y,  Hence, as diedral SM can neither be greater nor
N o n less than diedral #m, it must be equal to it. For like
reasons, diedral SN = diedral sn, and diedral SO
= diedral so. Therefore, the triedrals are equal,
or symmetrical, according to the arrangement of the faces. Thus, if SN and sn
are both considered as lying on the same side of the planes MSO and mso, the
triedrals are equal; but, if one lies on one side and the other on the opposite
side of those planes (SN in front, and sn behind, for example), the diedrals are
symmetrical, and hence equivalent.

Fia. 284,

PROPOSITION XYV,

452. Theorem.—Two triedrals which have the three diedrals
of the one equal to the three diedrals of the other, each to each, are
equal, or symmetrical and equivalent.

DEM.—In the two supplementary triedrals, the facial angles of the one will be
equal to the facial angles of the other, each to each, since they are supplements
of equal diedrals (438). Hence, the supplemeutary triedrals are equal or
equivalent, by the last proposition. Now, the facial angles of the first triedrals
are supplements of the diedrals of the supplementary; whence the correspond-*®
ing facial angles, being the supplements of equal diedrals, are equal. Therefore,
the proposed triedrals have their facial angles equal, each to each, and are con-
sequently equal, or symmetrical and equivalent. Q. E. D.

453. Cor.—All trirectangular triedrals are equal.

454. Sca.—The proof that two forms are equal, jncludes the fact that cor-
responding parts are equal.
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OF POLYEDRALS,

455. A Convex Polyedral 18 a polyedral in which rone of
the faces, when produced, can enter the solid angle. A section of

sach a polyedral made by a plane cutting all its edges is a convex
polygon. [See Fig. 285.)

PROPOSITION XVL.

456. Theorem,—The sum of the facial angles of any convex
PO2yedral 18 less than four right angles.

Dem.—Let S be the vertex of any convex polyedral. Letthe edges of this

Polyedral be cut by any plane, as ABCDE, which section
'will be a convex polygon, since the polyedral is convex.
From any point within this polygon, as O, draw lines to
its vertices, a8 OA, 0B, OC, etc. There will thus be formed
two sets of triangles, one with their vertices at S, and
the other with their vertices at O; and there will be an
equal number in each set, for the sides of the polygon
form the bases of both sets. Now, the sum of the angles
of these two sets of triangles is equal. But the sum of
the angles at the bases of the triangles having their ver-
tices at S is greater than the sum of the angles at the
bases of the triangles having their vertices at O, since
SBA + SBC > ABC, SCB + SCD > BCD, etc. (£34).
Therefore the sum of the angles at S is less than the sum of the angles at O,
i.e., less than 4 right angles. Q. E. D.

Fie. 285.

EXERCISES.
1. T have an iron block whose corners E
are all square (edges right diedrals, and ¥

C
the vertices trirectangular, or right, trie- '\ \ )
drals). If I bend a wire square around A b/s SZ.

one of its edges, as ¢S'd, at what angle do ‘lls /
I bend the wire? If I bend a wire ob- ¥

liquely around the edge, as asb, at what
angle can I bend it? If I bend it ob-
liquely, as es”f, at what angle can I bend c D
it?

22

Fia. 288.
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PROPOSITION XVL

499. Theorem.—The volumes of similar cylinders of revolu-
tion are to each other as the cubes of their altitudes, or-as the cubes
of the radis of their bases.

DEm.—Using the same notation as in the last demonstration, the student
should be able to give the reasons for the following steps.

R:7:: H:h (), whence #R* : =r*:: H* : A* (?). Multiplying the last
proportion by H : 2 :: H : h, we have zR*H : »r*4 :: H* : A%, oras R*: ¢,
gince H? : A* :: R* : 7 (?). Now, R'H and =»7*k are the volumes of the
cylinders (?) ; hence the volumes are to each other as the cubes of the altitudes,
or as the cubes of the radii of the bases. Q. E. D.

Sca—Itisa géneral truth, that the surfaces of similar solids, of any form, are
to each other as the squares of homologous lines; and their volumes are as the
cubes of such lines.

EXERCISES.

1. A farmer has two grain bins which are parallelopipeds. The
front of one bin is a rectangle 6 feet long by 4 high, and the front
of the other a rectangle 8 feet long by 4 high. They are built
between parallel walls 5 feet apart. The bottom and ends of the
first, he says, are “square” (he means, it is a rectangular parallelo-
piped), while the bottom and ends of the other slope, 7.¢., are oblique
to the front. What are the relative capacities of the bins?

2. How many square feet of boards in the walls and bottom of the
first bin mentioned in Ez. 1?7

3. An average sized honey bee’s cell is a right hexagonal prism,
.8 of an inch long, with faces % of an inch wide. The width of the
face is always the same, but the length of the cell varies according
to the space the bee has to fill. Are honey bee’s cells similar? Is a
honey bee’s cell of the dimensions given above, similar to a wasp’s
cell which is 1.6 inches long, and whose face is .3 of an inch wide?
How much more honey will the wasp’s cell hold than the honey
bee’s?

4. How many square inches of sheet-iron does it take to make a
joint of 7-inch stovepipe 2 feet 4 inches long, allowing an inch and
a half for making the seam ?

5. A certain water-pipe is 3 inches in diameter. How much water
is discharged through it in 24 hours, if the current flows 3 feet per
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SECTION III.
OF PRISMS AND CYLINDERS.

45%. A Prism is a solid, two of whose faces are equal, parallel
polygons, while the other faces are parallelograms. The equal par-
allel polygons are the Bases, and the parallelograms make up the
Lateral or Convex Surface. Prisms are triangular, quadrangular,
pentagonal, etc., according to the number of sides of the polygon
forming a base.

458. A Right Prism is a prism whose lateral edges are per-
pendicular to its bases. 4n Obligque prism is a prism whose late-
ral edges are oblique to its bases.

- 459. A Regular Prism is a right prism whose bases are
regular polygons; whence its faces are equal rectangles.

460. The Altitude of a prism is the perpendicular distance
between its bases : the altitude of a right prism is equal to any one
of its lateral edges.

461. A Truncated Prism is a portion of a prism cut off by
a plane not parallel to its base. A section of a prism made by a plane
perpendicular to its lateral
edges is called a Right Section. €

ILL’s.—In the figure, (&)
and (b) are both prisms:
(@) is oblique and (B) right.
PO represents the altitude
of («); and any edge of F
(D), as 8B, is its altitude.
ABCDEF, and abedef, are
lower and upper bases,
respectively. Either por-
tion of (B) cut off by an
oblique plane, as a'dd'd'e,
is a truncated prism. Fia. 288.

462. A Parallelopiped is a prism whose bases are parallel-
ograms : its faces, inclusive of the bases,are conseouently sl parxale\-
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ograms. If its faces are all rectangular, it is a recfangular parallel-
opiped.

463. A Cube is a rectangular parallelopiped whose faces are all
equal squares.

PROPOSITION L

464. Theorem.—Parallel plane sections
of any prism are equal polygons.

DeM.—Let ABCDE and abede be parallel sections of
the prism MN; then are they equal polygons.

For, the intersections with the lateral faces, as ab
and AB, etc., are parallel, since they are intersections
of parallel planes by a third plane (£10). Moreover,
these intersections are equal, that is, ab = AB, b¢ = BC,
ed = CD, etc., since they are parallels included between
parallels (242). Again, the corresponding angles of
these polygons are equal, thatis, a =A,5=8B,¢=_C,
etc., since their sides are parallel and lie in the same
direction (£16). Therefore the polygons ABCDE, and
abede, are mutually equilateral and equiangular; that

Fie. 289. is, they are equal. Q. E.D.

465. Cor—Any plane section of a prism, parallel to its base, is
equal to the base ; and all right sections are equal.

PROPOSITION IL

466. Theorem.—If three faces including a triedral of one prism
are equal respectively to three faces tncluding a triedral of the other,
and similarly placed, the prisms are equal.

DeM.—In the prisms Ad, and A'd,
let ABCDE equal A’B’‘C'D’E’, ABba =
A'B'Y«w, and BCeb = B'C'e’V/; then are
the prisms equal.

For, since the facial angles of the
triedrals B and B’ are equal, the trie-
drals are equal (4£51), and being ap-
plied they will coincide. Now, con-
ceiving A’d’ as applied to Ad, with B’
in B, since the bases are equal poly-
gons, they will coincide throughout;

F1e. 290, and the faces aB and a’'B’ will also
coincide. Whence, as a'¥/ falls in ab,
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and ¥¢ in be, the upper bases, which are equal because equal to the equal lower
bases, will coincide. Therefore the remaining edges will have two points com-
mon in each, and will consequently coincide.

467. Cor. 1.—Two right prisms having equal bases and equal
altitudes are equal.

If the faces are not similarly arranged, one prism can be inverted.

468. Cor. 2.—The above proposition and demonsiration apply
equally well to truncated prisms.

PROPOSITION IIIL

469. Theorem.—Any obligue prism 13
oquivalent to a right prism, whose bases are right
sections of the oblique prism, and whose edge is
equal to the edge of the obligue prism.

Dex.—Let LB be an oblique prism, of which abeds and .

Johil are right sections, and gb = GB; then is % equiva- 1
lent to LB. For the truncated prisms IG and ¢B have the
faces including any triedral, as G and B, equal and simi-
larly placed (?), whence these prisms are equal (£66).
Now, from the whole figure, take away prism /G, and
there remains the oblique prism LB ; also, from the whole
take away the prism ¢B, and there remains the right
prism %. Therefore, the right prism &% is equivalent to
the oblique prism LB. Q.E. D.

-_ Fio. 201.

PROPOSITION IV,

470. Theorem.—The opposite faces of a parallelopiped are
equal and parallel.

Dea.—Let Ac be a parallelopiped, AC and ac being
its equal bases (£62) ; then are its opposite faces equal
and parallel.
Since the bases are parallelograms, AB is equal and
parallel to DC; and,since the faces are parallelograms,
aA is equal and parallel to dD. Hence angle ¢cAB =
dDC, and their planes are parallel, since their sides are c
parallel and extend in the same directions. Therefore
aB and dC are equal (301)and parallel parallelograms. A B
In like manner it may be shown that aD is equal and Fie. 298,

parallel to 3C.
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PROPOSITION V.

471. Theorem.—The diagonals of a parallelopiped bisect each
other.

DEn.—Pass a plane through two opposite edges,
as B and dD. S8ince the bases are parallel, ¢ and
BD will be parallel (£10), and $BDd will be a paral-
lelogram. Hence, D and dB are bisected at o (?).
For a like reason, passing a plane through dc and AB,
we may show that dB and cA bisect each other, and
hence that cA passes through the common centre of
dB and 3D. 8o also aC is bisected by 8D, as appears
from passing a plane through ab and DC. Hence, all
the diagonals are bisected at 6. Q. E. D.

Fia. 208

472, Cor.—Thediagonals of a rectangular parallelopiped are squal.

PROPOSITION VL

473. Theorem.—A parallelopiped is divided tnfo two equiva-
lent triangular prisms by a plane passing through tts diagonally
oppostte edges. -

Deux.—Let H-ABCD be a parallelopiped, divided

L " through its diagonally opposite edges FA and HC;

then are the triangular prisms H-ABC, and L-ADC
equivalent.

For this parallelopiped is equivalent to a right
parallelopiped having a right section Abed for its base,
and AF for its edge (£689), . e, H-ABCD is equiva-
lent to A-Abod. For the snme reason the oblique
triangular prism H-ABC is equivalent to the right
triangular prism %-Abe; and L-ADC is equivalent
to LAde. But A-Abc is equal to A-Adc, as they

Fro. 294, are right prisms with equal bases (467) and a com-
mon altitude. Hence, H-ABC is equivalent to L-ADC,
w8 they are equivalent to two equal prisms. q. E. D.

PROPOSITION VIL

474. Theorem.—Any parallelopiped is equivalent to a rectan-
owlar parallelopiped having an equivalent base and the same altstude
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Deu.—Let H-ABCD be any parallelopiped
with all its faces oblique. 1st. By making the
right section adHe, and completing the paral-
lelopiped adHebcGf, we have an equivalent right
parsllelopiped (£69). 2d. Through the edge
& of this right parallelopiped make the right
section ea'd’f and complete the parallelopiped
ea’bfHd'¢'G, and we have a rectangular paral-
lelopiped  equivalent to the ome previously
formed (£69), and hence equivalent to the -
given one. Now, the base of this rectangular Fro. 205,
parallelopiped, . e., a'd'¢'d’, is equal to abed (?),
which in turn is equivalent to ABCD (?). Moreover, the altitude of the
rectangular parallelopiped is the same as that of the given one, since their
bases lie in the same paralle]l planes A¢’ and EG. Therefore, the parallelopiped
H-ABCD is equivalent to the rectangular parallelopiped H-a'¥’¢’d’, which
has an equivalent base and the same altitude. Q. B D.

PROPOSITION VIIL

4758. Theorem.—The area of the lateral surface of a right
prism 18 equal to the product of its altitude into the persmeter of
tis base.

Dxm.—The lateral faces are all rectangles, having for their common alti-
tide the altitude of the prism (#60). Whence the area of any face is the
product of the altitude into the side of the base which
forms its base; and the sum of the areas of the faces
{s the common altitude into the sum of the bases of
the faces, that Is, into the perimeter of the base of

The prism. Q E.D.

476. A Cylindrical Surface is a sur-
Tace traced by a straight line moving so as to
Temain constantly parallel to its first position,
“while any point in it traces some curve. The
wmoving line is called the Generatriz, and the
<urve tmced by a point of the line is the Fro. 306,
Directrez.
Ir1.—8uppose a line to start from the position AB, and move ‘ownrds t
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617, Cor. 2.—The area of the convex surface of the frustum of a
cone 18 equal to the product of its slant height into half the sum of
the circumferences of its bases; i.e., # (R + r) H, R and r being .
the radii of its bases, and H' its slant height.

From the corresponding property of the frustum of a pyramid, the student a
will be able to deduce the fact that 4 (2zR + 27r) H,or« (R + 7) H', is the =
area of this surface.

518. Cor. 3.—The-area of the convex surface of the frustum of a =
cone 18 equal to the product of its slant height into the circumference =y
of the circle midway between the bases.

The radius of the circle midway between the bases is § (* + R), whence its s=m—1s
circumference is #(r + R). Now,z (» + R) x H' is the area of the convex—me—x
surface of the frustum, by the preoeang corollary.

PROPOSITION V.

519. Theorem.—Two pyramids having equivalent bases ancs =
the same altitudes are equivalent, i. e., equal in volume.

Dum.—Let S-ABCD and S'-A’‘B’C’'D’E’ be two pyramids having the same ¢
altitudes, and base ABCD equivalen s =0!
S, tobase AB'C’'D’E/, i.e., equal in area ==
then is pyramid S-ABCD equivalen ac® =1
to §'-A’'B'C’'D'E/, . ¢., equal in volume==> & ¢
For, conceive the bases to be in the» y
same plane, and a plane to start fron— = 7
coincidence with the plane of thew €
bases, and move toward the vertices===%
D' remaining all the time parallel to thes> ¢
ol bases. At every stage of its progrese=<=="
the sections are equivalent, and as the=
plane reaches both vertices at the=
same time, by reason of the common altitude, it is evident that the volumes are=
equal.
Or, if desired, we may consider the two pyramids as divided into an equal
number of infinitely thin lamin@ parallel to the bases. Each lamina in one jas
its corresponding equivalent lamina in the other; hence the sum of all the
lamine in one equals the sum of all the lamina® in the other; ¢. e., the pyramids
are equivalent,

Fi1a. 309.
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Dem.—Let a right prism, with any regular polygon for
its base, be inscribed in the cylinder, as k-abedef, in the
cylinder whose axis is HO. The area of the lateral surface
of the prism is HO (= %) into the perimeter of its base,
t.6, HO x (ad + be + cd + de + ¢f + fa). Now, bisect the
arcs ab, be, etc., and inscribe a regular polygon of twice the
number of sides of the preceding, and on this polygon as
a base construct the right inscribed prism with double the
number of faces that the first had. The area of the lateral
surface of this prism is HO x the perimeter of ils base. In
like manner conceive the operation of inscribing right B
prisms with regular polygonal bases continually repeated;
it will always be true that the area of the lateral surface .
isequal to HO x the persmeter of the base. But the circum- Fre. 298.
ference of the base of the cylinder is the limit toward
which the perimeters of the inscribed polygons forming the bases of the prisms
constantly approach, and the convex surface of the cylinder is the limit of the
lateral surface of the inscribed prism. Therefore, the area of the convex sur-
face of the cylinder is HO into the circumference of the base. Finally, if R is

the radius of the base, 22R is its circumference. This multiplied by H the
altitude, ¢. e, H x 2zR, or 27RH, is the area of the convex surface of the
cylinder.

PROPOSITION X.

482. Theorem.—The volume of a rectangular parallelopiped
i8 equal to the product of the three edges of one of 1its triedrals.

Dem.—Let H-CBFE be a rectangular paral-
lelopiped. 1st. Suppose the edges commen-
surable, and let BC be 5 units in length, BA
4,and BF 7. Now conceive a cube, as d-f5Bg.
Whose edge is one of these linear units. This |,

<Cube may be used as the unit of volume. Con- ot
<Ccive the parallelopiped 0-caBb, whose length P
is 7, and whose edges ca and cb are 1 (the Z V4
Yinear unit of measure assumed). This paral- ' > 7/
Qelopiped will contain as many of the units E . (<]

Of volume as there are linear units in BF: Fia. 200.

Nve suppose 7. Again, conceive the paral-

A elopiped whose base is ECBF and altitude PE, one of the linear units. Thie
Iarallelopiped will contain as many of the former as there are linear units in
B3C: we suppose 5. Hence this last volume is 5 x 7 = 35. Finally, there wi\

13

(2]

A\
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PROPOSITION VIL

523. Theorem.—The volume of the frustum of a triangular
pyramid is equal to the volume of three pyramids of the sams

altitude as the frustum, and whose bases are the upper base, the lower
base, and a mean proportional between the two bases of the frustum.

DeM.—Let abe-ABC be the frustum of a triangu- — .
lar pyramid. Through ab and C passa plane cutting_scawp
off the pyramid C-abc. This has for its base the—mmme
upper buse of the frustum, and for its altitude the=—mmme
altitude of the frustum. Again, draw Ad, and pas=me== 3
a plane through Ab and 3C, cutting off the pyramic——md
b-ABC, which has the same altitude as the frustum _am,
and for its base the lower base of the frustum.esmmm
There now remains a third pyramid, 3-ACa; to be ex—=x-
amined. Through b draw 3D parallel to aA, ane= ¢
draw DC aud ¢D. The pyramid D-ACa is equive—um.

Fia. 312 lent to 5-ACa, since it has the same base and themr—e

same altitude. But the former may be considered cummmss
having ADC for its base, and the altitude of the frustum for its altitude, . .,
as pyramid a-ADC. We are now to show that ADC is a mean proportion __emal
between abc and ABC.
ABC:abc::i—B”:E?::ﬁ’:ﬁ'(?).

Also, ABC : ADC :: AB : AD (?);
whence ABC' : ADC” :: AB” : AD’ ).
By equality of ratios, ABC : abe :: ABC' : ADC";
whence ADC' = abc x ABC, 7. ¢, ADC is a mean proportional between tthe
upper and lower bases of the frustum.

524. Cor.—The volume of the frustum of any pyramid 2]
equal to the volume of three pyramids having the same allitude as
the frustum, and for bases, the upper base, the lower base, and — 6
mean proportional between the bases of the frustwm.

For, the frustum of any pyramid is equivalent to the corresponding frustus—3m
of & triangular pyramid of the same altitude and an equivalent base (?); ax— —mnd
the bases of the frustum of the triangular pyramid being both equivalent st
the corresponding bases of the given frustum, a mean proportional betwe =30
the triangular bases is a mean proportional between their equivalents.

L0

PROPOSITION VIIIL
525. Theorem.—The volume of a cone of revoliction is equal & <4
one-third the product of its base and altitude ; i. e., 7 R*H, R dei= =
the radius of the base and H the altitude.
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DEM.—This follows from the volume of a pyramid, by a course of reasoning
Precisely the same as in (515). The volume of a pyramid being equal to one-
third the product of the base and altitude, and the cone being the limit of
the pyramid, the volume of the cone is one-third the product of its base and
altitude. Now, R being the radius of the base of a cone of revolution, the
base (area of) is zR*, whence $7R*H is the volume, H being the altitude.

&526. Cor. 1.—The volume of any cone 18 equal to one-third the
product of its base and altitude.

527, Cor. 2.—The volume of the frustum of a cone is equal to
the volume of three cones having the same altitude as the frustum,
and for bases, the upper base, the lower base, and a mean propor-
Zional between the two bases of the frustum.

The truth of this appears from the fact that the frustum of a cone is the
limit of the frustum of & pyramid.

PROPOSITION IX,

528. Theorem.—The lateral surfaces of stmilar right pyra-
mids are to each other as the squares of their homologous edges, their
slant heights, and their altitudes ; i.e., as the squares of any two
homologous dimensions.

Dev.—Let A and a be homologous sides of the bases of two similar right
pyramids, H' and A’ their slant heights, H and % their altitudes, and P and p
the perimeters of their bases; then—

(1) P:p:: A : a, because the bases are similar polygons;
(2 A:a:: H' : %, because the faces are similar triangles ;
@ H:&::H:A®.
Whence, P:p::H:¥;
and, as $H/ N H N,
aultiplying, we have $Px H': {px A’ :: H?: A”:: A®: @’:: H*: A% But
{P x H’ and 4 p x &’ are the areas of the lateral surfaces.

PROPOSITION X.

529, Theorem.—The convex surfaces of similar cones of revo-
bution are to each other as the squares of their slant heights, the radii
of their bases, and their altitudes ; i.e., as the squares of any two ho-
mologeus dimensions.

Dem.—Let H' and A be the slant heights of two similar cones of revolution,
R and » the radii of their bases, and H and % their altitudes; their convex
surfaces are #RH' and zrh’. Now, since the cones are similar R: r:: H' : &'
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492, Cor—The volume of any cylinder 18 equal to the product
of its base into its altitude.

This can be demonstrated in a manner altogether analogous to the case
given in the proposition.

493. Similar Solids are such as have their corresponding
solid angles equal and their homologous edges proportional.

494. Similar Cylinders of revolution are such as have their
altitudes in the same ratio as the radii of their bases.

495. Homologous Edges of similar solids are such as are
included between equal plane angles in corresponding faces.

Iu's.—The idea of similarity in the case of solids is the same as in the
case of plane figures, viz., that of likeness of form. Thus, one would not think
such a cylinder as one joint of stovepipe, similar to another composed of a
hundred joints of the same pipe. One would be long and tery sim in propor
tion to its length, while the other would not be thought of as slim. But, if we
have two cylinders the radii of whose bases are 2 and 4, and whose lengths are

respectively 6 and 12, we readily recognize them as of the same shape: they
are similar.

PROPOSITION XIIL

496. Theorem.—The lateral surfaces of similar right prisms
are to each other as the squares of their edges (or altitudes) and as
the squares of any two homologous sides of their bases, i. e., as the
squares of any two homologous lines.

Dem.—Let A, B, 0, D, and E, be the sides of the base of one right prism
whose edge (equal to its altitude) is H, and a, J, ¢, d, and ¢, the homologous
sides of a similar prism whose edge is 4. Letting 4 + B+0 + D+ E= P,
anda + b + ¢ + d + ¢ = p, we have :

P:p::A:a::B:b::C:cete. (?).

But by hypothesis, H:%k::A:a::B:betc.

Hence, P:p::H:h ().

Now, H:h::H:h ().

Whence, Px H:pxh::H*:R* (.

And as H*:R*:: A*:a%:: B? : b, etc.,

we have Px H:pxh::A%:a::B%: 5 etc.

But P x H is the area of the lateral surface of one prism and p x A of the
other, whence the truth of the theorem appears.
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PROPOSITION XIV.

497. Theorem.—The volumes of similar prisms are to each
other as the cubes qf their homologous edges, and as the cubes of
Zheir altitudes.

Dem.—Let H-ABCDE and hA-abeds be
two similar prisms, of which A and 4 are
«<orresponding triedrals. Placinga so that
At will coincide with A, all the faces and
«=dges of one will be puarallel to or coinci-
<lent with the corresponding parts of the
©ther, by definition (493). Let fall the
Jperpendicular FP upon the common base,
or its plane produced, so that FP shall
<«qual the altitude of H-ABCDE, and OP,
Jntercented between the planes of the upper
=;and lower bases of %-abede, shall be its alti-
tude. Call the former altitude H, and the
Jatter 2. Since FP and AF are cut by
Pparallel planes, we have
AF :af ::H : h; and AB: ab:: H : 2,
since by definition AF : af :: AB : ad, etc. Fie. 802
Call the base of H-ABCDE B, and of
h-abede b. Now, as the bases are similar polygons,
B:b::AB":a0':: H*: A
Bat H:%::AB:ab:: H:hA.
Hence, BxH:bxh::AB' :ad :: H : A
Now, as B x H and b x & are the volumes of the respective prisms, and as
AB’ : 2" as the cubes of any other homologous edges are to each other, the
truth of the theorem is demonstrated.

PROPOSITION XYV.

498, Theorem.—The convex surfaces of similar cylinders of
revolution are to each other as the squares of their altitudes, and as

€10 squares of the radii of their bases.

Deu.—Let H and % be the altitudes, and R and » the radii of the bases of
two similar cylinders; the convex surfaces are 2xRH and 2zrk (481). Now,
2aRH : 2xrk :: RH : 72 () (1).
By hypothesis, H: 2:: R : r, or {%:%andll—{i:i
Multiplying the terms of the second couplet of (1) by these equals, we have,
2zRH : 2nrh - : H : A%,
and 27RH : 2zrh : : R*: 9. QB D



200 ELEMENTARY SOLID GEOMETRY.

polygon, and the perpendicular from whose vertex falls at the middle
of the base. This perpendicular is called the axs.

503. A Frustum of a pyramid is a portion of the pyramid
intercepted between the base and’a plane parallel to the base. If
the cutting plane is not parallel to the base, the portion intercepted
is called a 7Truncated pyramid.

504, The Slant Height of a right pyramid is the altitude
of one of the triangles which form its faces. The Slant Height of a
Frustum of a right pyramid is the portion of the slant height of the
pyramid intercepted between the bases of the frustum.

ILL’s.—The student will be able to find illustrations of the definitions in the
accompanying figures.

505. A Conical Surface is a surface traced by a line which
passes through a fixed point, while any other point traces a curve.
The line is the Generatriz, and the curve the Directriz. The fixed
point is the Vertez. Any line of the surface corresponding to some
position of the generatrix is called an Element of the surface.

506. A Cone of Revolution is a solid generated by the
revolution of a right angled triangle around one of its sides, called
the Awzis. The hypotenuse describes the Conver Surface of the
oone, and corresponds to the generatrix in the preceding definition.
The other side of the triangle describes the Base. This cone is right,
since the perpendicular (the axis) falls at the middle of the base.
The Slant Height is the distance from the vertex to the circumfer-
ence of the base, and is the same as the hypotenuse of the generating
triangle.

507. The terms Frustum and Truncated are applied to the cone
in the same manner as to the pyramid.
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minute? How much through a pipe of twice as great diameter, at
the same rate of flow ?

6. What is the ratio of the length of a hogshead holding 125 gal-
1 ons, to the length of a keg of the*same shape, holding 8 gallons?

7. What are the relative amounts of cloth required to clothe 3
xmen of the same form (similar solids), one being 5 feet high, another
&S feet 9 inches, and the other 6 feet, provided they dress in the same

s=style? If the second of these men weighs 156 lbs, what do the
«<thers weigh ?

8. If a man 5§ feet high weighs 160 1bs., and a man 3 inches taller
~wwveighs 180 lbs., which is the stouter in proportion to his height ?

9. I have a prismatic piece of timber from which I cut two blocks
“Both 5 feet long measured along one edge of the stick; but one
“block is made by cutting the stick square across (a right section),
=and the other by cutting both ends of it obliquely, making an angle

of 45° with the same face of the timber. Which block is the greater ?
‘Which has the greater lateral surface ?

10. How many cubic feet in a log 12 feet long and 2 feet 5 inches
in diameter? How many square feet of inch boards can be cut
from such a log, allowing $ for waste in slabs and sawing ?

SECTION 1V.

OF PYRAMIDS AND CONES.

500. A Pyramid is a solid having a polygon for its base,
and triangles for its lateral faces. If the base is also a triangle, it is
called a triangular pyramid, or a tetraedron (¢.e., a solid with four

faces). The vertex of the polyedral angle formed by the faces is the
vertez of the pyramid.

501. The Altitude of 2 pyramid is the perpendicular dis-
tance from its vertex to the plane of its base.

502. A Right Pyramid is one whowe hase n » weymies
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polygon, and the perpendicular from whose vertex falls at the middle
of the base. This perpendicular is called the axis.

503. A Frustum of a pyramid is a portion of the pyramid
intercepted between the base and’a plane parallel to the base. If
the cutting plane is not parallel to the base, the portion intercepted
is called a Truncated pyramid.

504. The Slant Height of a right pyramid is the altitude
of one of the triangles which form its faces. The Slant Height of a
Frustum of a right pyramid is the portion of the slant height of the
pyramid intercepted between the bases of the frustum.

ILr's.—The student will be able to find illustrations of the definitions in the
accompanying figures.

505. A Conical Surface is a surface traced by a line which
passes through a fixed point, while any other point traces a curve.
The line is the Generatriz, and the curve the Directriz. The fixed
point is the Verfex. Any line of the surface corresponding to some
position of the generatrix is called an Element of the surface.

506. A Cone of Revolution is a solid generated by the
revolution of a right angled triangle around one of its sides, called
the Azis. The hypotenuse describes the Convex Surface of the
oone, and corresponds to the generatrix in the preceding definition.
The other side of the triangle describes the Base. This cone is right,
since the perpendicular (the axis) falls at the middle of the base.
The Slant Height is the distance from the vertex to the circumfer-
ence of the base, and is the same as the hypotenuse of the generating
triangle. '

507%. The terms Frustum and Truncated are applied to the cone
in the same manner as to the pyramid.
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these triangles is the product of one-half the slant height into the sum of their
bases. But this is the lateral surface of the pyramid. (See the third cut in

Fig. 808)

&14. Cor.—The area of the laleral surface of the
fr-=2atum of a right pyramid is equal to the product

of~ 1ts slant height into half the sum of the perimeters )‘ ‘K
of" 1ts bases. "»

“The student will be able to give the proof. It is based
ap»on (325) and definitions. Fie. 307.

PROPOSITION IV,

S$15. Theorem.—The area of the convex surface of a cone of
rewolution (a right cone with a circular base) vs equal to the product

QF the circumference of its base and one-half its slant height, i. e.
7w RH', R being the radius of the base, and H' the slant height.

DeM.—In the circle which forms the base of the cone, conceive a regular

POlygon inscribed, as abede. Joining the vertices of the
&ngles of this polygon with the vertex of the cone, there
Will be constructed a right pyramid inscribed in the cone.
N Ow, if the arcs subtended by the sides of this polygon are
biaected, and these again bisected, etc., and at every step
8 right pyramid conceived as inscribed, it will always
Temain true that the lateral snrface of the pyramig is the
Perimeter of ita base into half its slant height. But,
B8  the number of faces of the pyramid is increased,

€ perimeter of the base approaches the circumference
Of the base of the cone, the slant height of the pyramid
ADDrxoaches tite slant height of the cone, and the lateral Fie. 308.
SQrfuce of the pyramid approaches the convex surface
©F  the cone. Hence, at the limit we still have the same expression for the
Aresq of the convex surface, that is, the circumference of the base multiplied by
half the slant height. Finally, if R is the radius of the base, its circumference

J2R, and H' heing the slant height, we have for the area of the convex sur-
facearR x {H', or zRH".

&16. Cor. 1.—The area of the convex surface of a cone vs also
€Qual to the product of the slant height into the circumference of the

. ©Tacle parallel to the base, and midway between the base and vertex.
This follows directly from the fact that the radius of the circle midway

}'etween the base and vertex is one-half the radius of the base, ¢. 6., 3R, whence
1ty circumference is *R. Now, R x H'is the area of the convex surface, by

e proposition.
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Dex.—The section abede of the pyramid S-ABCDE, made by a plane parallel
to ABCDE, is similar to ABCDE.

s Since AB and ab are intersections of two parallel
planes by a third plane, they are parallel (). So
also bc¢ is parallel to BC, ¢d to CD, etc. Hence,
angle b = B, ¢ = C, etc. (?), and the polygons are
mutually equiangular. Again, ab : AB :: Sb : SB,
and be : BC :: Sb: SB (). Hence, ab : bc :: AB |
: BC(?). In like manmner, we can show that d¢ :

A ed :: BC : CD,etc. Therefore, abede and ABCDE
are mutually equiangular, and have their corre-
sponding sides proportional, and are consequently

Fie. 305. gsimilar. Q. E. D.

PROPOSITION IL

511. Theorem.—If two pyramids of the same altitude are cut
by planes equally distant from and parallel to their bases, the sections
are to each other as the bases.

DeM.—Let S-ABC and $’-A’B’C’'D’E’ be
two pyramids of the same altitude, cut by
the planes abe and a'd'c'd'e', parallel to and
at equal distances from their bases ; then is
abe : a'b'cdée :: ABC : A'/B'C’'D'E’.

For, conceive the bases in the same
plane. Let SP = §'P’ be the common alti-
tude, and Sp = S’p’ the distances of the
cutting planes from the vertex. We have

ABC:abe::rB’:a_b’::S_ﬁ':gi).(?).
Also, AB'C'D'E’ : a'btede :: AB” :a%" ;: SP : §p" (8.
‘Whence, as SP = S$’P’, and Sp = S’»' (?), we have
abe : a'bc'd'e :: ABC : AB'C'D'E'(}). Q R. D.

512. Cor.—If the bases are equivalent, the sections are also
equivalent.

PROPOSITION IIT.
513. Theorem.—The area of the lateral surface of a right
pyramid is equal to the perimeter of the base multiplied by one-half
the slant height.

DreM.—The faces of such a pyramid are equal isosceles trlangles (?), whose
common altitude is the slant height of the pyramid Q). Wenee,the area of
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these triangles ia the product of one-half the slant height into the sum of their
bases. But this is the lateral surface of the pyramid. (See the third cut in
1y, 308.)

614, Cor.—The area of the laleral surface of the
[rustum of a right pyramid is equal to the product

of its slant height into half the sum of the perimeters )“&
of its bases. 1‘»

The student will be able to give the proof. It is based
apon (325) and definitions. Fie. 301.

PROPOSITION IV.

515. Theorem.—The area of the convex surface of a cone of
rewlution (a right cone with a circular base) is equal to the product
QF the circumference of its bass and one-half its slant height, i. e.,
7T RH', R being the radius of the base, and H' the slant height.

Dem.—In the circle which forms the base of the cone, conceive a regular
P Qlygon inscribed, as abede. Joining the vertices of the
A mgles of this polygon with the vertex of the cone, there
W ill be constructed a right pyramid inscribed in the cone.
ow, if the arcs subtended by the sides of this polygon are
Rsected, and these again bisected, etc., and at every step
& right pyramid conceived as inscribed, it will always
Temain true that the lateral surface of the pyramig is the
Prerimeter of ita base into half its slant height. But,
Aas the number of faces of the pyramid is increased,
the perimeter of the base approaches the circumference
Of the base of the cone, the slant height of the pyramid -
Aapproaches tite slant height of the cone, and the lateral Fie. 308.
Surface of the pyramid approaches the convex surface
of the cone. Hence, a¢ the limit we still have the same expression for the
area of the convex surface, that is, the circumference of the base multiplied by
half the slant height. Finally, if R is the radius of the base, its circumference
13 27R, and H' heing the slant height, we have for the area of the convex sur-
face 272R x $H', or zRH'.

516. Cor. 1.—The area of the convex surface of « cone is also
equal to the product of the slant height into the circumference of the
circle parallel to the base, and midway between the base and vertex.

This follows directly from the fact that the radius of the circle midway
hetween the base and vertex is one-half the radius of the base, ¢. 6., 3R, whence
its circumference is #ZR. Now, 7R x H'is the area of the convex surface, by
the proposition.
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PROPOSITION VIL

523. Theorem.— The volume of the frustum of a triangular
pyramid is equal to the volume of three pyramids of the same
altitude as the frustum, and whose bases are the upper base, the lower
base, and a mean proportional between the two bases of the frustum

DeM.—Let abe-ABC be the frustum of a triangu- — g.
lar pyramid. Through ab and C passa plane cutting —scagg
off the pyramid C-abe. This has for its base thee—mm ¢
upper buse of the frustum, and for its altitude them=sm
altitude of the frustum. Again, draw A, and pass=e ams
a plane through Ab and 4C, cutting off the pyrami®—md
b-ABC, which has the same altitude as the frustum. _sse,
and for its base the lower base of the frustum _smr
There now remains a third pyramid, 3-ACa, to be ex —=m=-
amined. Through b draw 4D parallel to @A, anaw _ad
draw DC and aD. The pyramid D-ACa is equivam=m= s

Fia. 812 lent to 5-ACa, since it has the same base and th_asr—he

same altitude. But the former may be considered sme=sme 28
having ADC for its base, and the altitude of the frustum for its altitude, f. o= o,
as pyramid ¢-ADC. We are now to show that ADC is a mean proportionsss_ansl
between abc and ABC.
ABC : abc :: AB :w::A_B‘:AB'(P).

Also, ABC : ADC :: AB : AD (?);
whence ABC' : ADC” :: AB" : AD’ o).
By equality of ratios, ABC : abc :: ABC® : ADC";
whence ADC' = abe x ABC, i. e., ADC is a mean proportional between tN_—#rthe
upper and lower bases of the frustum.

524. Cor.—The volume of the frustum of any pyramid
equal to the volume of three pyramids having the same altitude »
the frustum, and for bases, the upper base, the lower base, and
mean proportional betwesn the bases of the frustum.

For, the frustum of any pyramid is equivalent to the corresponding frustu. —ssam
of & triangular pyramid of the same altitude and an equivalent base (?); ar—ssmcnd
the bases of the frustum of the triangular pyramid being both equivalent - to
the corresponding bases of the given frustum, a mean proportional betwecmss=el
the triangular bases is a mean proportional between their equivalents,

Lo

18
a8
=g

PROPOSITION VIIL
525. Theorem.—The volume of a cone of revoliitiots is equal s £
one-third the product of its base and altitude ; i. e., }7R*H, R beinm— =
the radius of the base and H the altituds.
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Dex.—This follows from the volume of a pyramid, by a course of reasoning
precisely the same ag in (515). The volume of a pyramid being equal to one-
third the product of the base and altitude, and the cone being the limit of
the pyramid, the volume of the cone is one-third the product of its base and
altitude. Now, R being the radius of the base of a cone of revolution, the
base (area of) is #R*, whence §7R*H is the volume, H being the altitude.

8526. Cor. 1.—The volume of any cone i3 equal to one-third the
product of 1its base and altitude.

8527, Cor. 2.—The volume of the frustum of a cone is equal to
the volume of thres cones having the same altitude as the frustum,
and for bases, the upper base, the lower base, and a mean propor-
Zional between the two bases of the frustum.

The truth of this appears from the fact that the frustum of a cone is the
limit of the frustum of a pyramid.

PROPOSITION IX.

528. Theorem.—The lateral surfaces of similar right pyra-
mids are to each other as the squares of their homologous edges, their
slant heights, and their altitudes ; i. e., as the squares of any two
homologous dimensions.

DeuM.—Let A and @ be homologous sides of the bases of two similar right
pyramids, H' and 7' their slant heights, H and 4 their altitudes, and P and p
the perimeters of their bases; then—

(1) P:p:: A : e, because the bases are similar polygons;
(2 A:a::H' : %, because the faces are similar triangles ;
@ H:&::H:A(®.
Whence, P:p::H:¥;
and, as $H/ W H 2 W,
aultiplying, we have $Px H': pxh’:: H?: A?:: A%: a’:: H*: 4. But
§P x H’ and § p x &’ are the areas of the lateral surfaces.

PROPOSITION X.

529. Theorem.—The convex surfaces of similar cones of revo-
&ution are to each other as the squares of their slant heights, the radii
of their bases, and their altitudes ; i.e., as the squares of any two ho-
mologeus dimensions.

Dem.—Let H' and &' be the slant heights of two similar cones of revolution,

R and 7 the radii of their bases, and H and % their altitudes; their convex
surfaces are #RH' and zrA. Now, since the cones are similar R: »:: H' : &'
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PROPOSITION VIL

523. Theorem.— The volume of the frustum of a triangular
pyramid is equal to the volume of three pyramids of the same
altitude as the frustum, and whose bases are the upper base, the lower
base, and a mean proportional between the two bases of the frustum,

DeM.—Let abe-ABC be the frustum of a triangu-
lar pyramid. Through ab and C passa plane cutting
off the pyramid C-abe. This has for its base the
upper buse of the frustum, and for its altitude the
altitude of the frustum. Again, draw Ab, and pass
a plane through Ab and 3C, cutting off the pyramid
5-ABC, which has the same altitude as the frustum,
and for its base the lower base of the frustum.
There now remains a third pyramid, 3-ACa, to be ex-
amined. Through b draw 3D parailel to aA, and
draw DC and aD. The pyramid D-ACa is equiva-

Fie. 812 lent to 5-ACa, since it has the same base and the

same altitude. But the former may be considered as
having ADC for its base, and the altitude of the frustum for its altitude, §. e.,
a8 pyramid a-ADC. We are now to show that ADC is a mean proportional
between abc and ABC. :
ABC : abc:: AB' : @b :: AB" : AD' ()

Also, ABC : ADC :: AB : AD (?);
whence ABC' : ADC' :: AB" : AD" ().
By equality of ratios, ABC : abc :: ABC" : ADC";
whence ADC' = abc x ABC, 4. e, ADC is a mean proportional between the
npper and lower bases of the frustum.

524. Cor.—The volume of the frustum of any pyramid is
equal to the volume of three pyramids having the same altitude as
the frustum, and for bases, the upper base, the lower base, and a
mean proportional between the bases of the frustum.

For, the frustum of any pyramid is equivalent to the corresponding frustum
of & triangular pyramid of the same altitude and an equivalent base (?); and
the bases of the frustum of the triangular pyramid being both equivalent to

the corresponding bases of the given frustum, a mean proportional between
the triangular bases is a mean proportional between their equivalents.

PROPOSITION VIIL
525. Theorem.—The volume of a cone of revolutiors is equal to
one-third the product of its base and altitude ; i. e., $7R'H, R being
e radius of the base and H the altitude.
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DEn.—This follows from the volume of a pyramid, by a course of reasoning
precisely the same a8 in (515). The volume of a pyramid being equal to one-
third the product of the base and altitude, and the cone being the limit of
the pyramid, the volume of the cone is one-third the product of its base and
altitude. Now, R being the radins of the base of a cone of revolution, the
base (area of) is 7R*, whence $7R*H is the volume, H being the altitude.

526, Cor. 1.—The volume of any cone 18 equal to one-third the
product of its base and altitude.

827, Cor. 2.—The volume of the frustum of a come is equal to
the volume of three cones having the same altitude as the frustum,
and for bases, the upper base, the lower base, and a mean propor-
tional between the two bases of the frustum.

The truth of this appears from the fact that the frustum of a cone is the
limit of the frustum of a pyramid.

PROPOSITION IX.

528. Theorem.—The lateral surfaces of similar right pyra-
mids are to each other as the squares of their homologous edges, their
slant heights, and their altitudes ; i e., as the squares of any two
Aomologous dimensions.

DeuM.—Let A and @ be homologous sides of the bases of two similar right
Pyramids, H' and %' their slant heights, H and % their altitudes, and P and p
the perimeters of their bases; then—

(1) P:p:: A : a, because the bases are similar polygons;
(2 A:a::H : &, because the faces are similar triangles ;
@ H:A::H:A(®).
Whence, P:p::H:&;
and, as H W H W,
aultiplying, we have }Px H': §pxa’ :: H?: #7:: A*: a*:: H': A% But
{Px H’ and }p x &’ are the areas of the lateral surfaces.

PROPOSITION X.

529. Theorem.—The convezx surfaces of similar cones of revo-
Intion are to each other as the squares of their slant heights, the radii
of their bases, and their altitudes ; i.e., as the squares of any two ho-
mologeus dimensions.

DeM.—Let H' and A’ be the slant heights of two similar cones of revolution,

R and # the radii of their bases, and H and % their altitudes; their convex
surfaces are #RH' and #rA’. Now, since the cones are similar R:r 2 H' 1 &.
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Multiplying the terms of this proportion by the corresponding terms of =#H' -
wh' :: H' : ', we have—

aRH' : zrk’ :: H'? : .
Hence the convex surfaces are as the squares of the slant heights, and since
R:r::H :A::H:AQ, R :7:: H?: #?:: H*: *; and consequently
aRH' : zrh' : : R*: 7 :: H* : A3,

PROPOSITION XL

530. Theorem.—The volumes of similar pyramids are to each
other as the cubes of their homologous dimensions.

DeM.—Letting A and a be homologous sides of the bases of two similar
pyramids, B and & their bases, and H and 4 their altitudes, the student should
be able to give the reasons for the following proportions :

B:h::A%:qa*:: H?: .
3H:3h::A:a::H :hA
Whence 4BH : 40k :: A*:a*::H*: A*. Q.E.D.

PROPOSITION XII.

531. Theorem.—The volumes of similar cones are to each other
as the cubes of their altitudes, or as the cubes of the radit of their
bases.

DeM. R and 7 being the radii of their bases, and H and 4 their altitudes,
R :9 H: 22(),and R*: 7 :: H*: A%

Also, 47H :4nh :: H: A,
Multiplying, 1zR°H : yzr*h : : H* : A% oras R*: 7. Q. B.D.
EXERCISES.

1. What is the area of the lateral surface of a right hexagonal
pyramid whose base is inscribed in a circle whose diameter is 20 feet,
the altitude of the pyramid being 8 feet? What is the volume of
this pyramid ?

2. What is the area of the lateral surface of a right pentagonal
pyramid whose base is inscribed in a circle whose radius is 6 yards,
the slant height of the pyramid being 10 yards? What is the vol-
ume of this pyramid ?

3. How many quarts will a can contain, whose entire height is 10
Inches, the body being a cylinder 6 inches in diameter and 64 inches
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539. Cor. 4.—A small circle 13 less as its distance from the cen-
2re of the sphere is greater.

For,its diameter, being a chord of a great circle, is less as it is farther from
the centre of the great circle, which is also the centre of the sphere.

&540. Cor. 5.—All great circles of the same sphere are equal, their
radii being the radius of the sphere.

PROPOSITION IL N

8541. Theorem.—Any great circle divides the sphere into two
equal parts called Hemispheres.

DEM.—Conceive a sphere as divided by a great circle, <. ¢., by a plane passing
through its centre, and let the great circle be considered as the base of each
portion. These bases being equal, reverse one of the portions and conceive
its base placed in the base of the other, the convex surfaces being on the same
side of the common base. Since the bases are equal circles, they will coincide,
and since every point in the convex surface of each portion is equally distant
from the centre of the common base, the convex surfaces will coincide. There-
fore, the portions coincide throughout, and are consequently equal. Q. E. D.

PROPOSITION IIL

542. Theorem.—The intersection of any two great circles of a
sphere is a diameter of the sphere.

DeM.—The intersection of two planes is a straight line; and in the case of
the two great circles, as they both pass through the centre of the sphere, this is
one point of their intersection. Hence, the intersection of two great circles of'
a gphere is a straight line which passes through the centre. Q. E. D.

543. Cor.—The intersections on the surface of a sphere of two
eircumferences of great circles are a semi-circumference, or 180°,
xpart, since they are at opposite extremities of a diameter.

DISTANCES ON THE SURFACE OF A SPHERE.

544. Distances on the surface of a sphere are always to be under-
stood as measured on the arc of a great circle, unless it is otherwise
mtated.
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CIRCLES OF THE SPHERE.

PROPOSITION L

533. Theorem.—Every section of a sphere, made by a plane, ts
a circle.

DeM.—Let AFEBD be a section of a sphere
whose centre is O, made by a plane; then is it a
circle.

For, let fall from the centre O a perpendicular
upon the plane AFEBD, as OC, and draw CA, CD,
CE, CB, etc., lines of the plane, from the foot of the
perpendicular to any points in which the plane
cuts the surface of the sphere. Join these points
with the centre, O, of the sphere. Now, OA, OD,
OB, OE, etc., being radii, are equal; whence, CA,

Fig. 318. CD, CB, CE, etc., are equal ; ¢.6., every point in the

line of intersection of a plane and surface of a

sphere is equally distant from a point in this plane. Hence, the intersection is
acircle. Q. k. D.

534. DEr.—A circle made by a plane not passing through the
centre is a Small Circle ; one made by a plane passing through the
centre is a Great Circle.

535, Cor. 1.—A perpendicular from the centre of a sphere, upon
any small circle, pierces the circle at its centre ; and, conversely, &
perpendicular to a small circle at its centre passes- through the centre
of the sphere.

536, DEr.—A diameter perpendicular to any circle of a sphere
is called the Azis of that circle. The extremities of the axis are
the Poles of the circle.

53%7. Cor. 2—The pols of a circle 18 equally distant from every
point in 1ts circumference. -

The student should be able to give the reason.

838. Gor. 3.—Every circle of a sphere has two poles, which, in
case of a great circle, are equally distant from every point in the cir-
cumyerence of the circle; bul, tn case of a small circle, one pole 18

nearer any point n the circumference than the other pole 4a.
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SoLuTIoN.—Let A and B be two points on the sur-
face of a sphere, through which it is proposed to pass a
«<ircumference of a great circle. From B as a pole, with
|an arc equal to a quadrant, strike an arc on, as nearly
~where the pole of tne circle passing through A and B
lies, as may be determined by inspection. Then, from
A, with the same arc, strike an arc 8¢ intersecting on at
P. Now, P is the pole of the great circle passing through
A and B. Hence, from P as a pole, with 2 quadrant arc
draw a circle; it will pass through A and B, and will Fie. 316.
be a great circle, since its pole is a quadrant’s distance
from its circumference. [The student should make: the construction on the

spherical blackboard.]

549, Cor. 1.—Through any two points on the surface of a sphere,
one great circle* can always be made to pass, and only one, except
when the two points are at the extremities of the same diameter, in
which case an infinite .umber of great circles can be passed through
the two points. .

Since the arcs on and st are arcs of great circles, the circumferences of which
they form parts will intersect also on the opposite side of the sphere, at a dis-
tance of a semicircumference from P. But these two points are poles of the
same great circle. Now, as the two great circles can intersect at no other points,
there can be only one great circle passed through A and B. But if the two
given points were at the extremities of the same diameter, as at D and C, the
arcs st and on would coincide, and any point in this circumference being taken
as a pole, great circles can be drawn through D and C. [The student should
trace the work on the spherical blackboard.]

550, 8cH—The truth of the corollary is also evident from the fact that
three points not in the same straight line determine the position of a plane.
"Thus A, B, and the centre of the sphere, fix the position of one, and only one,
&reat circle passing through A and B. Morebver, if the two given points are at
the extremities of the same diameter, they are in the same straight line
~with the centre of the sphere, whence an infinite number of planes can be
Yoassed through them and the centre. The meridians on the earth’s surface af-
Rord an example, the poles (of the equator) being the given points.

851, Cor. 2.—If two points in the circumference of a great circls
«of a sphere, not at the extremities of the same diameter, are at a
quadrant’s distance from « point on the surface, that point 1is the
ole of the circle.

® The word circle may be understood to refer either to the circle proper, or to its cir.
~umference. The word is in constant use in the higher mathematice, in the latter gense,
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PROPOSITION IV.

545. Theorem.—The distances, measured on the surface of a
sphere, from a pole to all points in the circumference of a circle of
which it 13 the pole, are equal.

DeM.—Let P be a pole of the small circle AEB;
then are the arcs PA, PE, PB, etc., which measure
the distances from P to any points in the circum-
ference of circle AEB, equal. For, by (837), the
straight lines AP, PE, PB, etc., are equal, and these
equal chords subtend equal arcs, as arc PA, arc
PE, arc PB, etc., the great circles of which these
lines are chords and arcs being equal (54£0).
Thus, for like reasons, arc PPQA = arc P'LE =
Fie. 314. arc P'RB, etc.

546, Cor.—The distance from the pole of a great circle to any
point in the circumference of the circle is a quadrant (a quarter of a
circumference). ,

Since the poles are 180° apart (being the extremities of a diameter), PAQP’ =
PELP’ = a semicircumference. But, in case of a great circle, chord PL = chord
P’L (= chord PQ == chord P’Q), whence arc PEL = arc P'L = arc PAQ = arc
P’'Q. Hence, each of these arcs is a quadrant.

547 . Sca.—By means of the facts demonstrated in
this proposition and corollary, we are enabled to draw
arcs of small and great circles, in the surface of a sphere,
with nearly the same facility as we draw arcs and
lines in a plane. Thus, to draw the small circle AEB,
we take an arc equal to PE, and placing one end of it
at P, cause a pencil held at the other end to trace the
arc AEB, etc. To describe the circumference of a great
circle, a quadrant must be used for the arc. By bend-
ing a wire into an arc of the circle, and making a loop
in each end, a wooden pin can be put through one loop and a crayon through
the other, and an arc drawn as represented in the figure.

Fie. 315,

PROPOSITION V.

SL8. Problem.—To pass a circumference of & great circle
terongh any two points on the surface of a sphere.
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DxM.—Let P be apoint in the surface of the hemi-
=phere whose base is ACBC’, and DPmD’ an arc of a
#zreat circle passing through P and perpendicular to
ADCBC’; then is PD the shortest path on the surface
from P to circumference ADBC’, and PmD’ is the
longest path from P to the circumference, measured
on the arc of a great circle,

For, the shortest path from P to any point in ecir-

cumference ADBC’ is measured on the arc of a great p
circle (552). Now, let PC be any oblique arc of a Fie. 319.
greatcircle. We will show that arc PD < arc PC. Pro-
duce PD until DP’ = PD; and pass a great circle through P’ and C. Draw the
radii OP, OD, OC, and OP’. The triedrals O-PDC and O-P'DC have the facial angls
POD = P’OD, they being measured by equal arcs, and the facial angle DOC com-
mon. Hence, as the included diedrals are equal, both being right, the triedrals are
equal or symmetrical (446). In this cuse they are symmetrical, and the facial
angle POC = P'OC; whence the arc PC = arc P’C. Finally, since PC + P'C >
PP, PC, the half of PC + P'C, is greater than PD, the half of PP’ ’
Secondly, PmD’ is the supplement of PD, and we are to show that it is greater
than any other arc of a great circle from P to the circumference ADBC’. Let
PnC’ be any arc of a great circle oblique to ADCBC’. Produce C'zP to C. Now
CPaC’ is a semicircumference and consequently equal to DPmD’. But we have
before shown that PD < PC, and subtracting these from the equals CPnC’ and
DPmD’, we have PmD’ > PnC’.

558, Cor—From any point in the surface of a hemisphere there
are two perpendiculars to the circumference of the great circle which
Jorms the base of the hemisphere ; ome of which perpendiculars
Measures the least distance to that circumference, and the other the
Greatest, on the arc of any great circle of the sphere.

Thus PD apd PmD” are two perpendiculars from P upon the circumference
#ADBC'.

SPHERICAL ANGLES,

556. The angle formed by two arcs of
«ircles of a sphere is conceived as the same
as the angle included by the tangents to
the arcs at the common point.

IrL.—Let AB and AC be two arcs of circles of
the sphere, meeting at A; then the angle BAC is
conceived as the same as the angle B'AC’, B'A
being tangent to the circle BADm, and C’A to the
circle CAEn.

Fie. 820,
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667. A Spherical Angle is the
angle included by two arcs of great circles.

ILL.—BAC, Fig. 821, is a spherical angle, and is
conceived as the same as the angle B'AC’, B’/Aand
C’A being tangents to the great circles BADF and
CAEF. [The student should not confound such an
angle as BAC, Fig. 320, with a spherical angle.]

I

PROPOSITION VIIL

558. Theorem.—A spherical angle is equal to the measure of & f
the diedral included by the great circles whose arcs form the sides of &

the angle.

Fia. 8<2.

DemM.—Let BAC be any spherical angle, anE> amd
BADF and CAEF the great circles whose arcs BAS. E3A
and CA include the angle; then is BAC equal tc»# U
the measure of the diedral C-AF-B. For, since twc» o W'
great circles intersect in a diameter (542), AF i X~
a diameter. Now B’Ais a tangent to the circles £=>~C!
BADF, that is, it lies in the same plane and is per-—a=>»©¢
pendicular to AO at A. In like manner C’A liem=> K fi¢
in the plane CAEF and is perpendicular to AQ. € _A_O
Hence B’AC’ is the nieasure of the diedral C-AF-E=X — - B

(425). Therefore the spherical angle BAC, which is the same as the plane anglas X =le
B’AC/, is equal to the measure of the diedral C-AF-B. Q. E. D.

8559. Cor. 1.—If one of two great circles passes through the poleeSle
of the other, their circumferences intersect at right angles.

Fia. 828.

DeM.—Thus, P being the pole of the great circlcmse——
CABm, PO is its axis, and any plane passing througl——m——
PO is perpendicular to the plane CABm (42%7) —
Hence, the diedral B-AO-P is right, and the spheri—
cal angle PAB, which is equal to the measure of the=
diedral, is also right.

-

560, Cor. 2.—A spherical angle s meas— -
ured by the arc of a great circle intercepted
between its sides, and at a quadrant’s dis-
tance from its vertez.

Thus, the spherical angle CPA is measured by CA, PC and PA being quad-
rants. For, since PC is a quadrant, CO is perpendicular to PO, the edge of the
diedral C-PO-A, and for a like reason AO is perpendicular to PO. Hence, COA
is the measure of the diedral, and consequently CA, its measure, is the measure

of the spherical angle CPA.
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861. Cor. 3.—The angle included by two arcs of small circles is
Z ke same as the angle included by two arcs of greai circles passing
Z krough the vertex and having the same tangents.

Thus BAC = B”AC”. For the angle BAC is, by
definition, the same as B'AC’, B’A and C’A being
tangents to BA and CA. Now, passing planes
through C’A, B'A, and the centre of the sphere,
we have the arcs B”A, C”A, and B’A, C’A tangents
to them. Hence, B/AC” is the same as B’AC’, and
consequently the same as BAC.

8562, 8cH.—T0 draw an arc of a great circle
which shall be perpendicular to another ; or, what Fia. 34.
18 the same thing, to construct a right spherical angle. Let it be required to erect
an arc of a great circle perpendicular to CAB at A, Fig. 823. Lay off from A, on
the arc CAB, a quadrant’s distance, as AP’, and from P’ as a pole, with a quad-
rant describe an arc passing through A. This will be the perpendicular required.
In a similar manner we may let fall a perpendicular from any point in the
surface, upon any arc of a great circle. To let fall a perpendicular from P upon
the arc CAB, from P as a pole, with a quadrant describe an arc cutting CAB,
as at P’. Then from P’ as a pole, with & quadrant describe an arc passing
through P and cutting CAB; and it will be perpendicular to CAB. [The stu-
dent should have practice in making these constructions on the sphere.]

PROPOSITION IX.

563. Problem.—To pass‘the circumference of a small circle
ZPLrough any three points on the surface of a sphere.

SoLUTION.—Let A, B, and C be the three points in the surface of the sphere
through which we propose to pass the circumference of
a circle. Pass arcs of great circles through the points,
forniing the spherical triangle ABC. Thus, to pass an
arc of a great circle through B and C, from B as a pole,
with a quadrant strike an arc as near as may be to the

pole of the required circle; and from C as a pole, with
the quadrant strike an arc intersecting the former, as at
P; then is P the pole of a great circle passing through
B and C (?). Hence, from P as a pole, with a quadrant :

pass an arc through B and C, and it will be the arc re- Fie. 825.
quired (561). In like manner pass arcs through A and

C,A and B. Now, bisect two of these arcs, as BC and AC, by arcs of great
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857. A Spherical Angle is the
angle included by two arcs of great circles.

ILL.—BAC, Fig. 821, is uspherical angle, and is
conceived as the same as the angle B’AC’, B’A and
C’A being tangents to the great circles BADF and
CAEF. [The student should not confound such an
angle as BAC, Fig. 320, with a spherical angle.]

PROPOSITION VIIL

558. Theorem.—A spherical angle is equal to the measure of
the diedral included by the great circles whose arces form the sides of

the angle.

Dem.—Let BAC be any spherical angle, and
BADF and CAEF the great circles whose arcs BA
and CA include the angle; then is BAC equal to
the measure of the diedral C-AF-B. For, since two
great circles intersect in a diameter (542), AF is
a diameter. Now B’A is a tangent to the circle
BADF, that is, it lies in the same plane and is per-
pendicular to AO at A. In like manner C’A lies
Fro. 82 in the plane CAEF and is perpendicular to AO.

T Hence B’AC’ is the measure of the diedral C-AF-B
(425). Therefore the spherical angle BAC, which is the same as the plane angle
B’AC/, is equal to the measure of the diedral C-AF-B. Q. E. D.

559. Cor. 1.—If one of two great circles passes through the pole
of the other, their circumferences intersect at right angles.

DeM.—Thus, P being the pole of the great circle
CABm, PO is its axis, and any plane passing through
PO is perpendicular to the plane CABm (427).
Hence, the diedral B-AO-P is right, and the spheri-
cal angle PAB, which is equal to the measure of the
diedral, is also right.

560. Cor. 2.—A spherical angle is meas-
ured by the arc of a great circle intercepted
between 1its sides, and at a quadrant’s dis-
tance from its vertex.

Thus, the spherical angle CPA is measured by CA, PC and PA being quad-
rants. For, since PC is a quadrant, CO is perpendicular to PO, the edge of the
diedral C-PO-A, and for a like reason AO is perpendicular to PO. Hence, COA
is the measure of the diedral, and consequently CA, its measure, is the measure

of the spherical angle CPA.

Fiae. 8%8.
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For, OP, the perpendicular, is shorter than any line which can be drawn
£firrom O to any other point in the plane (?), hence any other point in the plane
than P lies farther from the centre of the sphere than the length of the radius,
&and is, therefore, without the sphere.

567, Cor. 2.—A tangent through P to ANY circle of the sphere
passing through this poiut, lies in the tangent plane.

DEeM.—Thus MN, tangent to the small circle P2Rb through P, lies in the
tangent plane. For, conceive the plane of the small circle extended till it in-
tersects the tangent plane. This intersection is tangent to the small circle,
since it touches it at one point, but cannot cut it; otherwise the tangent plane
~would have another point than P common with the surface of the sphere. But
there can be only one tangent to a circle at a given point. Hence this intersec-
tion is MN, which is consequently in the tangent plane. ’

OF SPHERICAL TRIANGLES.

568. A Spherical Triangle is a portion of the surface of a
sphere bounded by three arcs of great circles. In the present treatise
these arcs will be considered as each less than a semicircumfer-
ence.

The terms scalene, isosceles, equilateral, right angled, and oblique
angled, are applied to spherical triangles in the same manner as to

blane triangles.

PROPOSITION XL

569. Theorem.— The sum of any two sides of a spherical iri-
<engle is greater than the third side, and their difference 18 less than
€ 26 third side.

DEn.—Let ABC be any spherical triangle; then is
BC < BA + AC, and BC — AC < BA; and the same is
true of the sides in any order. For, join the vertices A,

B, and C, with the centre of the sphere, by drawing AO,
BO, and CO. There is thus formed a triedral O-ABC,
whose facial angles are measured by the sides of
the triangle (208). Now, angle BOC < BOA + AOC
(434), whence BC < BA + AC: and subtracting AC
from both members, we have BC — AC < BA.
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circles perpendicular to each. [The student will readily perceive how this is
done.] The intersection of these perpendiculars, o, will be the pole of the small
circle required (?). Then from o, as a pole, with an arc oB draw the circum-
ference of a small circle : it will pass through A, B, and C (?), and hence is the
circumference required.

OF TANGENT PLANES.

564. A Tangent Plane to a curved surface at a given point
is the plane of two lines respectively tangent to two plane sections
through the point.

IrL.—Let P be a point in the curved
surface at which we wish a tangent
plane. Pass any two planes through
the surface and the point P, and let OPQ@
and MPN represent the intersections of
these planes with the curved surface.
Draw UV and ST in the planes of the
sections, and tangent to OPQ and MPN,

Fie. 326. at P. Then is the plane of UV and ST
the tangent plane at P,

PROPOSITION X.

565. Theorem.—A tangent plane to a sphere 18 perpendicular
t0 the radius at the point of tangency.

DEM.—Let P be any point in the surface
of a sphere; pass two great circles, as PaA,
etc., and PmAR, through P, and draw ST
tangent to the arc mP, and UV tangent to the
arc aP; then is the plane SVTU a tangent
plane at P, and perpendicular to the radius
OP. For, a tangent (as ST) to the arc mP is
perpendicular to the radius of the circle, ¢. e.,
to OP, and also a tungent (as VU) to the arc aP
is perpendicular to the radius of ks circle,
t.e., to OP. Hence, OP is perpendicular to
two lines of the plane SVTU, and conse-

Fie. 327. quently to the plane of these lines ()
Q.E.D.

566. Cor. 1.—Every point in a tangent plane to a sphere, except
Zhe point of tangency, 18 without the sphere.
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being different liney frova C'A and B’A are oblique to the edge AO, and in-

<1lude an angle less than its measure, and consequently less than CAB. For
= like reason the planc angle ACB < the spherical angle ACB, and plane angle
ABC < spherical angle ABC. Moreover, it is easy to see that the inequality
1retween any plane angle and the corresponding spherical angle increases as the
<hords BA and CA deviate more from the tangents. , Whence we see why the
sum of the angles of the spherical triangle is not a fixed quantity.

8785, Cor—A spherical triangle may have one, two, or even three
right angles; and, in fuct, it may have one, two, or three obtuse

angles ; since, in the latter case, the sum of the angles will not neces-
sarily be greater than 540°.

876. DEr.—A4 Trirectangular Spherical Triangle is
& spherical triangle which has three right angles.

PROPOSITION XIV.

577. Theorem.—The trirectangular triangle vs one-eighth of
the surface of a sphere.

DEeM.—Pass three planes through the centre of a sphere, respectively per-
pendicular to each other. They will divide the A
surface into 8 trirectangular triangles, any one of
which mgy be applied to any other. Thus, let
ABA’B’, ACA’C’, and CBC'B’ be the great circles

formed by the three planes, mutually perpendicu-

lar to each other. 'The planes being perpendicular

to each other the diedrals, as A-CO-B, C-BO-A,

C-A0-B, etc, are right, and hence the angles of

the 8 triangles formed are all right. Also, as AOB

is a right angle, AB is a quadrant;as BOC is a A
right angle, CB is a quadrant, etc. Hence, each Fie. 330,
side of every triangle is a quadrant. Now any one triangle may be applied to
any other. [Let the student make the application.] Hence the trirectangular
triangle is one-eighth of the surface of a sphere. Q. E. D.

578. Cor.—The trirectangular triangle is equilateral and its
sides are quadrants.

PROPOSITION XYV,

579. Theorem.—In an 1isosceles spherical triangle the angles
_opposite the equal sides are equal ; and, conversely, If two angles of
a spherical triangle are equal, the triangle is isosceles.
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DEeM.—Let ABC be an isosceles spherical triangle in which AB = AC; thens——mm
angle ABC = ACB. For, draw the radii AO, CO, anC—mmm(
BO, forming the edges of the triedral 0-ABC. Now —=,
since AB = AC, the facial angles AOC and AOB arr——p
equal, and the triedral is isosceles. Hence the die=mmm=.
drals A-OB-C and A-OC-B are equal (£42), and conmmmmm-
sequently the spherical angles ABC and ACB ar——
equal (558). Again, if angle ABC = angle ACB, sid____¢
AC =side AB. For in the triedral O-ABC, the die=
drals A-OB-C and A -OC-B are equal, whence the facismms]
angles AOB and AOC are equal (£43), and cons
quently the sides AB and AC which measure these angles.

Fia. 331.

580. Cor.—An equilateral spherical triangle is also equiangular— ;
and, conversely, If the angles of a spherical iriangle are equal ¢y
triangle 1s equilateral.

PROPOSITION XVL

581. Theorem.—On the same or on equal spheres two 180scem===les
triangles having two sides and the included angle of the one equal = 1o

two sides and the included angle of the other, each to each, can  — be
superimposed, and are consequently equal. .
DeM.—In the triangles ABC and AB’C’, let AB = AC, AB’ = A€’; and — let

AB = AB', BC =B'C’, and angle ABC = AB'C’; tiil _hen
can the triangle AB'C’ be superimposed upon AEHE -BC.
For, since the triangles are isosccles, we have angle A "\BC
= ACB, AB'C’ = AC’B’, and, as by hypothesis ABC=—— =
AB’C/, these four angles are equal each to each., Fc—ora
like reason AB = AC = AB’ = AC’. Now, apply—=ilg
AC’ to its equal AB, the extremity A at A and C’ asstB,
with the angle B’ on the same side of AB as C, the ¢ ==01"

vexities of the arcs AC’ and AB being the same, and % in

the same direction, the arcs will coincide. Then, a

angle AC’'B’ = ABC, C’B’ will take the direction BC, and since these arcs —==r¢

equal by hypothesis, B’ will fall at C. Hence B’A will fall in CA, as only c—®1¢€

arc of a great circle can pass between C and A, and the triangle AB’C’ is supws> <€X-

imposed upon ABC; wherefore they are equal. [Let the student give whbe
application when other parts are assumed equal.]

Fia. 832.

582. Symmetrical Spherical Triangles sre such 2=
have the parts (sides and angles) of the one respectively equal to tlx ==
parts of the other, but arranged in a different order, so that the txi—
angles are not capable of superposition.
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Tri—In Fy. 838, ABC and A’B'C’ represent symmetrical spherical tri-
ngles. In these triangles A = A, B = B',C = C/,
\C = AC/, AB = A’B’, and BC = B’C’; neverthe-
ess we cannot conceive one triangle superimposed
ipon the other. Thus, were we to make the at-
empt by placing A’B’ in its equal AB, A’ at A, and
3’ at B, the angle C’ would fall on the opposite side
»f AB from C. Now, we cannot revolve A'C’'B’ on
AB (or its chord), and thus make the two coincide,
for this would bring their convexities together.
Norcan we make them coincide by reversing A'B'C/, Fie. 333.
and placing B’ at A, and A’ at B. For, although
these two arcs will thus coincide, as the angle B’ is
not equal to A, B'C’ will not fall in AC; and, again,
if it did, C’ would not fall at C, since B’C’ and AC are
not equal.
But, considering the triangles ABC and A’B’C’ in
Fig. 834, in whichA=A,B =B, C=C,AC =
A'C’, AB = A’'B’, and BC = B’C’, we can readily
conceive the latter as superimposed upon the former.
[The student should make the application.] Now, Fie. 334.
the two triangles are equal in each case, as will
subsequently appear of the former. Buch triangles as
those in Fig. 833 are called symmetrically equal, while
the latter are said to be equal by superposition.
Jig. 385 represents the same triangles as Fig. 834,
and exhibits a complete projection* of the semicir-
cumferences of which the sides of the triangles are
arcs. The student should become perfectly familiar
with it, and be able to draw it readily. Thus, ABb
is the projection of the semicircumference of which Fia. 835.
AB is an arc, aACo of the semicircumference of which AC is an arc, etc., etc.

PROPOSITION XVIL

583. Theorem.—Symmetrical spherical triangles are equiva-
lent.

* To understand what is meant by thc projection of these lines, conceive a hemisphere
with its base on the paper, and represented by the circle abe, and all thearcs raised up from the
paper as they would be on the surface of such a hemisphere. Thus, {dering the arc gABb,
the ends @ and b would be in the paper just where they are, but the rest of the arc would be
off the paper, as though you could take hold of B and raise it from the paper while a and b
remain fixed. The lines in the figure are representations of lines on the eurface of sucha
hemiephere, as they would appear to an eye situated in the axis of the circle abc, and at an
infinite distance from it; that is, just as if each point in the lines dropped perpendiculurly
down upon the paper. Arcs of great circles perpendicalar to the base are projected in etraight
lines passing tbrough the centre, and oblique arcs are projected in ellipses. See Spherical
Trigonometry (97-709).
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DeM.—Let ABC be an isosceles spherical triangle in which AB = AC ; then
. angle ABC =ACB. For, draw the radii AO, CO, and
BO, forming the edges of the triedral 0-ABC. Now,
since AB = AC, the facial angles AOC and AOB are
equal, and the triedral is isosceles. Hence the die-
drals A-OB-C and A-OC-B are equal (£42), and con-
sequently the spherical angles ABC and ACB are
cqual (558). Again, if angle ABC = angle ACB, side
AC =side AB. For in the triedral O-ABC, the die-
drals A-OB-C and A-OC-B are equal, whence the facial
angles AOB and AOC are equal (£43), and conse-
quently the sides AB and AC which measure these angles.

Fie. 331,

&580. Cor.—An equilateral spherical triangle is also equiangular ;
and, conversely, If the angles of a spherical triangle are equal the
triangle 1s equilateral.

PROPOSITION XVL

581. Theorem,.—On the same or on equal spheres two isosceles
triangles having two sides and the included angle of the one equal to
two sides and the tncluded angle of the other, each to each, can be
superimposed, and are consequently equal. g

DeM.—In the triangles ABC and AB’C’, let AB = AC, AB’ = A€’; and let
AB = AB’, BC =B'C’, and angle ABC = AB’C’; then
can the triangle AB’C’ be superimposed upon ABC.
For, since the triangles are isosceles, we have angle ABC
= ACB, AB’C’ = AC’B’, and, as by hypothesis ABC =
AB’C’, these four angles are equal each to each. Fora
like reason AB = AC = AB’ = AC’. Now, applying
AC’ to its equal AB, the extremity A at A and C’ at B,
with the angle B’ on the same side of AB as C, the con-
vexities of the arcs AC’ and AB being the same, and in
the same direction, the arcs will coincide. Then, as
angle AC'B’ = ABC, C’B’ will take the direction BC, and since these arcs are
equal by hypothesis, B’ will fall at C. Hence B’A will fall in CA, as only one
arc of a great circle can pass between C and A, and the triangle AB’C’ is super-
imposed upon ABC; wherefore they are equal. [Let the student give the
application when other parts are assumed equal.]

Fre. 883,

582. Symmetrical Spherical Triangles are such as
have the parts (sides and angles) of the one respectively equal to the
parts of the other, but arranged in a different order, so that the tri-

angles are not capable of superposition.



OF SPHERICAL TRIANGLES. 223

ILL.—In Fy. 838, ABC and A’B'C’ represent symmetrical spherical tri-
angles. In these triangles A = A’,B = B’,C = C/,
AC = A'C, AB = A’B’, and BC = B’C’; neverthe-
less we cannot conceive one triangle superimposed
upon the other. Thus, were we to make the at-
tempt by placing A’B’ in its equal AB, A’ at A, and
B’ at B, the angle C’ would fall on the opposite side
of AB from C. Now, we cannot revolve A’C’'B’ on
AB (or its chord), and thus make the two coincide,
for this would bring their convexities together.
Norcan we make them coincide by reversing A'B'C/, Fie. 333.
and placing B’ at A, and A’ at B. For, although
these two arcs will thus coincide, as the angle B’ is
mot equal to A, B'C’ will not fall in AC; and, again,
ifit did, C’ would not fall at C, since B’C’ and AC are
Jot equal.
But, considering the triangles ABC and A’‘B’C’ in
Fig. 834, in whichA= A", B=PB', C =C,AC =
A'C’, AB = A’B’, and BC = B’C’, we can readily
conceive the latter as superimposed upon the former.
[The student should make the application.] Now, Fie. 334.
the two triangles are equal in each case, as will
subsequently appear of the former. Buch triangles as
those in Fig. 333 are called symmetrically equal, while
the latter are said to be equal by superposition.
Fig. 335 represents the same triangles as Fig. 834,
and exhibits a complete projection* of the semicir-
cumferences of which the sides of the triangles are
arcs. The student should become perfectly familiar
with it, and be able to draw it readily. Thus, aABb
is the projection of the semicircumference of which Fie. 835.
AB is an arc, aACe of the semicircumference of which AC is an arc, etc., etc.

PROPOSITION XVIIL.

583. Theorem.—Symmetrical spherical triangles are equiva-
lent.

—

* To understand what is meant by the projection of these lines, conceive a hemisphere
with its base on the paper, and represented by the circle abe, and all thearcs raised up from the
Paper as they would be on the surface of such a hemisphere. Thus, considering the arc gABb,
the ends @ and b would be in the paper just where they are, but the rest of the arc would be
Off the paper, as though youn could take hold of B and raise it from the paper while g and
remain fixed. The lines in the figure are representations of lines on the surface of such a
hemisphere, as they wounld appear to an eye sitnated in the axie of the circle abc, and at an
infinite distance from it; that is, just as if each point in the lines dropped perpendiculurily
down upon the paper. Arcs of great circles perpendicalar to the base are projected in etraight
lines passing tbrough the centre, and oblique arcs are projected in ellipses. See Spherical
Tyigonometry (97-709).
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BC > B'C’, A> A’. For, BC being greater than B’C’, COB > C'OB’; whence=m =9
B-AO-C > B"-A’0-C’ (450), or A is greater than A",

PROPOSITION XXI.

589. Theorem.—On the same, or on equal spheres, two spheri——s.
eal triangles having the sides of the one respectively equal to the side —===s
of the other, or the angles of the one respectively equal to the angle ===y
of the other, are equal, or symmetrical and equivalent.

Dem.—The sides of the trianglés being equal, the facial angles of the triedra™ 14
at the centre are equal, whence the triedrals are equal or symmetrical (45 1),
Consequently the angles of the triangles are equal, and the triangles are equ o],
or symmetrical and equivalent.

Again, the triangles being mutually equiangular, the triedrals have the==ir
diedrals mutually equal ; whence the triedrals are equal or symmetrical (£55===).
Therefore, the sides of the triangles are mutually equal, and the triangles smmme=re
equal, or symmetrical and equivalent. (See Figs. 338, 834.)

PROPOSITION XXIL

590. Theorem.—On spheres of different radii, mutually eqms— ~qut
eongular triangles are similar (not equal).

DEM.—Let O be the common centre of two w un-
equal spheres ; and let ABC be a spherical trian s smngle
on the surface of the outer. Draw the radii AO,EXB BO,
and CO, constructing the triedral O-ABC. Nes ~— 0w,
the intersections of these faces with the surface =of
the inner sphere will constitute a triangle whicl —-h is
mutually equiangular with ABC. Thus, A a
B = b, and C = ¢, since in each case the correspmssson.
ding diedrals are the same. From the similar s==sec-
tors aOb, AOB, we have ab : AB :: a0 : AO; s Td,

Fie. 340. in like manner, a¢ : AC :: a0 : AO. Whence, =5 :

AB ::ac: AC. 8o, aleo, ab : AB :: 50 : BO, em nd

bo:BC:: 10 : BO; whence, ab : AB :: bo: BC. Thus we see that ABC sannd

abe, having their angles equal each to each, have also their sides proportiom &k :
therefore they are similar.

POLAR OR SUPPLEMENTAL TRIANGLES.

59 1. One triangle is polar to another when the vertices of on- <
are the poles of the sides of the other. Such triangles are als <=
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called supplemental, since the angles of one are the supplements of
the sides opposite in the other, as will appear hereafter.

PROPOSITION XXIIL

8592. Problem.—Having a spherical
triangle given, to draw its polar.

SoLuTION.—Let ABC be the given triangle.* From
A as 4 pole, with a quadrant strike an arc, as C'B’,
From B as a pole, with a quadrant strike the arc
C’A’; and from C, the arc A’B’. Then is A'B’C’
polar to ABC.

593. Cor—If one iriangle is polar to
another, conversely, the latter is polar to the
former ; i.e., the relation is reciprocal.

Fia. 341.

Thus, A’B’C’ heing polar to ABC; reciprocally, ABC is polar to A‘B’C’; that
is, A’ is the pole of CB, B’ of AC, and C’ of AB. For every poimt in A’'B’ is
at a quadrant’s distance from C, and every point in A’C’ is at a quadrant’s dis-
tance from B. Hence, A’ is at a quadrant’s distance from the two points C and
B of CB, and is therefore its pole. [In like manner the student should show
ihat B’ is the pole of AC, and C’ of AB.]

594. ScR—By producing each of the arcs
struck from the vertices of the given triangles
sufficiently, four new triangles will be formed, viz.,
A’'B’C’, QC'B’, PC'A’, and RA’B’. Only the first
r»f these is called polar to the given triangle.
Kt is easy to observe the relation of any of the PX,
parts of any one of the other three triangles to
the parts of the polar. Thus, QC’ = 180° — ¥/,
@B’ = 180° — ¢, QC’'B’ = 180° — B'C’A’, @B'C’

=180° — C'B'A’, and @ = A’ = 180° — q, as will
appear hereafter.

* This should be executed on a sphere. Few students get clear ideas of polar triangics
without it, Care t«hould be taken to construct a variety of triangies as the given triangle,
since the polar triangle does not always lie in the position indicated in the figure here given.
Let the given triangle have one side coneiderably greater than 90°, another somewhat less,
and the third quite small. Also, let each of the sides of the given triangle be greater
than 90°.
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BC > B'C’, A> A’. For, BC being greater than B'C’, COB > C’'OB’; whence
B-AO-C > B-A’O-C’ (450), or A is greater than A"

PROPOSITION XXI.

589. Theorem.—On the same, or on equal spheres, two spheri-
eal triangles having the sides of the one respectively equal to the sides
of the other, or the angles of the one respectively equal to the angles
of the other, are equal, or symmetrical and equivalent.

DeM.—The sides of the trianglés being equal, the facial angles of the triedrals
at the centre are equal, whence the triedrals are equal or symmetrical (£51).
Consequently the angles of the triangles are equal, and the triangles are equal,
or symmetrical and equivalent.

Again, the triangles being mutually equiangular, the triedrals have their
diedrals mutually equal ; whence the triedrals are equal or symmetrical (£52).
Therefore, the sides of the triangles are mutually equal, and the triangles are
equal, or symmetrical and equivalent. (See Figs. 838, 834.)

PROPOSITION XXIL

590. Theorem.—On spheres of different radii, mutually equi-
engular triangles are similar (not equal).

DEM.—Let O be the common centre of two un-
equal spheres ; and let ABC be a spherical triangle
on the surface of the outer. Draw the radii AO, BO,
and CO, constructing the triedral O-ABC. Now,
the intersections of these faces with the surface of
the inner sphere will constitute a triangle which is
mutually equiangular with ABC. Thus, A = g,
B = b, and C = ¢, since in each case the correspon-
ding diedrals are the same. From the similar sec-
tors a0b, AOB, we have ab : AB :: a0 : AO; and,

Fia. 340. in like manner, ac : AC:: aO : AO. Whence, ab :

AB :: ac: AC. 80, aleo, ab : AB :: 50 : BO, and

bde:BC:: 0 :BO; whence, ab : AB :: b¢: BC. Thus we see that ABC and

abe, having their angles equal each to each, have also their sides proportional:
therefore they are similar.

POLAR OR SUPPLEMENTAL TRIANGLES.

59 1. One triangle is polar to another when the vertices of one
are the poles of the sides of the other. Such irisngles are also
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QUADRATURE OF THE SURFACE OF THE SPHERE.

596. The Quadrature* of a surface is the same as finding its
area. The term is applied under the conception that the process
consists in finding a square which is equivalent to the given surface.

PROPOSITION XXV,

597. Lemma.—The surface generated by the revolution of a
regular semi-polygon of an even number of sides, about the diameter
of the circumscribed circle as an axis, is equivalent to the circum-
ference of the snscribed circle multiplied by the axis.

Dem.—Let ABCDE be one half of a regular octagon, AE A
being the diameter of the circumscribing circle. If the semi- &l
perimeter ABCDE be revolved about AE as an axis, the surface B e
generated will be2zr x AE,rbeing the radius of the inscribed

circle, as a0, or 50.

This surface is composed of the convex surfaces of cones
and frustums of cones. Thus AB generates the surface of a
cone, BC the frustum of a cone, etc. Let @ and b be the mid-
dle points of AB and BC, and draw am, Be, bn, and CO per-
Pendicular to the axis, and Bd parallel to it. Also draw the

radii of the inscribed circle, O and 50. Indicate the sur- Fie. 845.
faces generated by the sides, as Surf. AB, Surf. BC, etc.
"The areasof thesesurfaces are:
Surf. AB =2x x am x AB (516), 1)
Surf. BC = 27 x bn x BC (518), etc. ©
Now, from the similar triangles Oam and BAc,
We have a0O:AB::am: Ac or 27 x aO : AB :: 27 x am: Ac;
“Whence 27 x am x AB = 2zr x Ac, putting r for aO.
Also, from the similar triangles Obn and CBd,
“Wehave 50:BC::dn:Bd(=cO) or2r x %0:BC::2x x bn:00;
“Whence 27 x bn x BC =2xr x ¢O, putting  for 50.
Substituting these values in (1) and (2), we obtain
Surf. AB = 2xr x Ac,
Surf. BC = 2nr x O,

And, in like manner, Surf. CD = 2zr x Op,
And, Surf. DE = 2nr x pE.
Adding, Surf. ABCDE = 2m» (Ac + cO + Op + pE) =27 x AE.

Finally, since the same course of reasoning is applicable to the semi-polygons
of 16, 82, 64, etc., sides, the truth of the proposition is established

* Latin guadratus, equared.
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PROPOSITION XXIV.

595. Theorem.—Any ANGLE of a spherical iriangle is ths
supplement of the SIDE opposite in its polar triangle ; and any SIDE
is the supplement of the ANGLE opposite in the polar triangle.

Dev.—Let ABC and A’B’C’ be two spherical tri-
angles polar to each other; and let the sides of
each be designated as a, b, ¢, a', ¥, ¢, a being
opposite A, a' opposite A’, b opposite B, etc. Then
A=180°—a', B =180°—¥,C=180°— ¢, a =
180° — A’, b = 180° — B’,and ¢ = 180° — C".

For, join the vertices of the triangles with the
centre of the sphere, thus forming the triedrals
O-ABC, and O-A’B'C’. These triedrals are sup-
plemental; for, A being the pole of C’'B’, AO is the
axis of the great circle of which C’B’ is an arc (?),

Fio. M3, hence is perpendicular to the plane C’OB’, and
consequently to OB’ and-OC’ (). In like manner,
BO is perpendicular to the plane A’'OC’, and hence to OA’ and OC’. 8o, also,
CO is perpendicular to OA’ and OB’. Now, these triedrals being supplement-
ary, the diedral B-AO-C is the supplement of the facial angle C’'OB’ (£38); or,
since the diedral B-AO-C is the same as the spherical angle A, and the facial
angle C'OB’ is measured by a’, A is the supplement of a',¢. 6., A = 180° — a'
For like reasons, B = 180° — %', and C = 180° — ¢’. [Let the student give them
in full] Again, the diedral B’-A’O-C’ is the supplement of the facial angle
COB (438); whence A’ = 180° — a. In like manner B’ = 180° — b, and C' =

180° — e.

S8ECcOND DEMONSTRATION.—Let ABC and A’B’C’ be two
polar triangles. Let CB, CA, and AB be represented by a,
b, and ¢ respectively,and G'B’, C’A’,and A’B’ by &', ¥, and ¢.
To show that A = 180° — «’, produce b and ¢, if necessary, till
they meet the side @, of the triangle polar to ABC, in ¢ and
d. Now A is measured by ed (560). But, since C'd =90°,
and B’e = 90°, C’d + B’¢,or C'B’ + ed = 180° ; whence trans-
posing, and putting &’ for C'B’, we have ed = A = 180° — 4.
In like manner C’g + A’f = C’A’ + fy = 180°; whence fg = B = 180° — C'A,
or 180° — ¥. 8o, also, C =180° — ¢. To show that A’ = 180° — a, consider
that A’ being the pole of CB, f¥ is the measure of A. Now Bf=90° (?), and
Ci=90°; whence Bf + Ci =180°. But Bf + Ci=fi + a, wherefore fi + 6 =
180°,and transposing, and putting A’ for fi, we have A’ = 180° — a. In like man-
ner we may show that B’ = 180° — b, and C’' =180° — ¢. [The student should
give the details.]
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QUADRATURE OF THE SURFACE OF THE SPHERE.

596. The Quadrature* of a surface is the same as finding its
srea. The term is applied under the conception that the process
consists in finding a square which is equivalent to the given surface.

PROPOSITION XXY.

59%7. Lemma.—The surface generated by the revolution of a
reqular semi-polygon of an even number of sides, about the diamster
of the circumscribed circle as an azis, i3 equivalent to the circum-
ference of the inscribed circle multiplied by the aXis.

DeM.—Let ABCDE be one half of a regular octagon, AE
being the diameter of the circumscribing circle. If the semi- a
perimeter ABCDE be revolved about AE as an axis, the surface .
generated will be 2zr x AE,» being the radius of the inscribed
circle, as a0, or 50.

This surface is composed of the convex surfaces of cones
and frustums of cones. Thus AB generates the surface of a
cone, BC the frustum of a cone, etc. Let @ and b be the mid- D=
dle points of AB and BC, and draw am, Be, b, and CO per- \r
pendicular to the axis, and Bd parallel to it. Also draw the E.
radii of the inscribed circle, 2O and 50. Indicate the sur- Fie. 345.
faces generated by the sides, as Surf. AB, Surf. BC, etc.

The areas of thesesurfaces are:
Surf. AB =2m x am x AB (516), 1)
Surf. BC = 2% x bn x BC (518), etc. (